
EUROfusion Integrated Modelling
workflows Documentation

Release 3.0

WPCD

Jun 25, 2021

CONTENTS

1 Introduction to the EUROfusion Project Code Development for integrated modelling 1
1.1 The European Integrated Modelling (EU-IM) approach 2
1.2 Mission . 2
1.3 Achievements . 2
1.4 Publications . 3
1.5 Contributors . 4
1.6 Glossary . 5

2 Infrastructure 7
2.1 Kepler . 7

2.1.1 Introduction to Kepler - basics . 7
2.1.1.1 Installing Kepler and tutorial workflows 7

2.1.2 Kepler IMAS actors . 10
2.1.3 IMAS Kepler based configuration . 11

2.1.3.1 Running Kepler using IMAS environment 11
2.1.3.1.1 Setting up environment . 11

2.1.3.1.1.1 Backing up old files 11
2.1.3.1.2 Creating place to store your personal installations of Kepler . 11
2.1.3.1.3 Running Kepler (default release) 11

2.1.4 FC2K - Embedding user codes into Kepler . 11
2.1.4.1 FC2K basics . 12

2.1.4.1.1 What FC2K actually does? 12
2.1.4.1.2 FC2K main window . 12
2.1.4.1.3 Actor description . 13
2.1.4.1.4 Environment . 13
2.1.4.1.5 “Arguments” tab explained 13
2.1.4.1.6 “Parameters” tab explained 14
2.1.4.1.7 “Source” tab explained . 15

2.1.4.1.7.1 Libraries . 15
2.1.4.1.8 “Settings” tab explained . 17
2.1.4.1.9 “Documentation” tab explained 18
2.1.4.1.10 “Interface” tab explained 18

2.1.4.2 Incorporating user codes into Kepler using FC2K - exercises 19
2.1.4.2.1 Embedding Fortran codes into Kepler 19
2.1.4.2.2 Embedding C++ codes . 19

2.1.5 FC2K - developer guidelines . 19
2.1.5.1 What code wrapper actually does? 19
2.1.5.2 Development of Fortran codes . 20

2.1.5.2.1 Subroutine syntax . 20

i

2.1.5.2.2 Arguments list . 20
2.1.5.2.3 Code parameters . 20
2.1.5.2.4 Diagnostic info . 21
2.1.5.2.5 Examples . 21

2.1.5.3 Development of C++ codes . 21
2.1.5.3.1 Function syntax . 21
2.1.5.3.2 Arguments list . 22
2.1.5.3.3 Code parameters . 22
2.1.5.3.4 Diagnostic info . 22
2.1.5.3.5 Examples . 23

2.1.5.4 Delivery of the user code . 23
2.1.6 FC2K - Example 1 - Embedding Fortran codes into Kepler (no CPOs) 24

2.1.6.1 Get familiar with codes that will be incorporated into Kepler 24
2.1.6.2 Build the code by issuing . 24
2.1.6.3 Prepare environment for FC2K . 24
2.1.6.4 Start FC2K application . 24
2.1.6.5 Open a nocpo_example_1 project . 25
2.1.6.6 Project settings . 25
2.1.6.7 After all the settings are correct, you can generate actor 26
2.1.6.8 Confirm Kepler compilation . 26
2.1.6.9 You can now start Kepler and use generated actor 26
2.1.6.10 Launch the workflow . 27

2.1.7 FC2K - Example 2 - Embedding Fortran code into Kepler (CPOs) 27
2.1.7.1 Get familiar with codes that will be incorporated into Kepler 28
2.1.7.2 Build the code . 28
2.1.7.3 Prepare environment for FC2K . 28
2.1.7.4 Start FC2K application . 28
2.1.7.5 Open project cposlice2cposlicef_fc2k 29
2.1.7.6 Project settings . 29
2.1.7.7 After all the settings are correct, you can generate actor 30
2.1.7.8 Confirm Kepler compilation . 30
2.1.7.9 You can now start Kepler and use generated actor 30
2.1.7.10 Launch the workflow . 31

2.1.8 FC2K - Example 3 - Embedding C++ code within Kepler (no CPOs) 32
2.1.8.1 Get familiar with codes that will be incorporated into Kepler 32
2.1.8.2 Build the code by issuing . 33
2.1.8.3 Prepare environment for FC2K . 33
2.1.8.4 Start FC2K application . 33
2.1.8.5 Open project simplecppactor_nocpo 33
2.1.8.6 Project settings . 34
2.1.8.7 Actor generation . 35
2.1.8.8 Confirm Kepler compilation . 35
2.1.8.9 You can now start Kepler and use generated actor 35
2.1.8.10 Launch the workflow . 36

2.1.9 FC2K - Example 4 - Embedding C++ code within Kepler (CPOs) 36
2.1.9.1 Get familiar with codes that will be incorporated into Kepler 37
2.1.9.2 Build the code by issuing . 37
2.1.9.3 Prepare environment for FC2K . 37
2.1.9.4 Start FC2K application . 37
2.1.9.5 Open project simplecppactor . 37
2.1.9.6 Project settings . 38

ii

2.1.9.7 Actor generation . 39
2.1.9.8 Confirm Kepler compilation . 39
2.1.9.9 You can now start Kepler and use generated actor 40

2.1.10 IMAS Kepler 2.1.3 (default release) . 41
2.1.10.1 Installation of default version of Kepler (without actors) 41
2.1.10.2 Installation of “dressed” version of Kepler (with actors) 42

2.1.11 IMAS Kepler 2.1.5 (release candidate) . 42
2.1.12 Installation based on README file . 43

2.2 General Grid Description and Grid Service Library . 44
2.2.1 Resources . 44
2.2.2 Documentation . 44
2.2.3 Outdated documentation . 44

2.2.3.1 Example grids . 44
2.2.3.1.1 Example grid details . 44

2.2.3.1.1.1 Example Grid #1: 2d structured R,Z grid 45
2.2.3.1.1.2 Object classes . 45
2.2.3.1.1.3 Example 2: B2 grid 47

2.2.3.1.2 Object list examples . 47
2.2.3.1.3 Subgrid examples . 48

2.2.3.2 Grid service library . 49
2.2.3.2.1 Using the grid service library 49

2.2.3.2.1.1 Setting up the environment 49
2.2.3.2.1.2 Checking out and testing the grid service library . . . 50

2.2.3.2.2 Example applications (outdated) 50
2.2.3.2.2.1 Plotting 3d wall geometry with VisIt (temporary so-

lution, not required any more) 50
2.2.3.2.2.2 Using UALConnector to visualize CPOs using the

general grid description 51
2.2.3.3 IMP3 General Grid Description and Grid Service Library - Tutorial . . 51

2.2.3.3.1 Setup your environment . 51
2.2.3.3.2 Compile & run examples 52
2.2.3.3.3 Visualize . 52

3 European Transport Simulator (ETS) 53
3.1 ETS Documentation . 53

3.1.1 Configuration of the ETS-5 workflow in Kepler 53
3.1.2 ETS releases . 54

3.2 ETS workflows in KEPLER . 54
3.2.1 Configuring the ETS run . 55

3.2.1.1 Workflow parameters . 55
3.2.1.1.1 General Parameters . 55
3.2.1.1.2 Time resolution . 56
3.2.1.1.3 Transport . 56
3.2.1.1.4 Equilibrium . 56
3.2.1.1.5 Numerics . 56
3.2.1.1.6 Equilibrium . 56

3.2.1.2 Ion, Impurity and Neutral Composition 57
3.2.1.3 Equations to be solved and boundary conditions 58

3.2.1.3.1 Main Plasma . 58
3.2.1.3.2 Impurity . 59
3.2.1.3.3 Neutrals . 60

iii

3.2.1.3.4 Input profiles interpolation 60
3.2.1.4 Convergence loop . 60
3.2.1.5 Equilibrium . 62

3.2.1.5.1 Initialization Settings . 62
3.2.1.5.2 Run Settings . 63

3.2.1.6 Transport . 64
3.2.1.6.1 Transport models . 64
3.2.1.6.2 Background transport . 65
3.2.1.6.3 Edge transport barrier . 65
3.2.1.6.4 Total transport coefficients 65

3.2.1.7 MHD . 66
3.2.1.8 Sources and impurity . 67

3.2.1.8.1 Analytical & Impurity sources 68
3.2.1.8.2 HCD sources . 68
3.2.1.8.3 Power control . 69
3.2.1.8.4 Total power . 71

3.2.1.9 Instantaneous events & Actuators . 71
3.2.1.9.1 Pellet . 71
3.2.1.9.2 Sawtooth . 74
3.2.1.9.3 Actuators . 74

3.2.1.10 Scenario output . 74
3.2.1.11 Visualization during the run . 75

3.2.1.11.1 Multiple Tab Display . 75
3.2.1.11.2 ETSviz . 75

3.2.2 List of Actors . 77
3.2.2.1 Equilibrium actors . 77
3.2.2.2 Core transport actors . 79
3.2.2.3 Heating and current drive actors . 81
3.2.2.4 Events actors . 82
3.2.2.5 Non-physics actors . 83

3.3 Turbulent Flux Quantities in Transport Models . 83
3.3.1 Overview . 83
3.3.2 Particle Flux as an Example . 83
3.3.3 Metric Coefficients . 84
3.3.4 Heat Fluxes . 85
3.3.5 Ds and Vs from Turbulence Codes to Transport Solvers 85
3.3.6 Ambipolarity . 87
3.3.7 Statistical Character . 87

3.4 Running Exponential Average . 87
3.4.1 Overview . 87
3.4.2 Definition . 88
3.4.3 Differential Equation . 88
3.4.4 Equivalence to Past-Time Convolution Integral 88
3.4.5 notes . 89

4 Equilibrium and MHD Stability workflow (EQSTABIL) 91
4.1 Workflow rationale . 91
4.2 Workflow organization & design . 91

4.2.1 Initialization . 92
4.2.2 FixedBndCode . 92

4.2.2.1 Redefining the plasma boundary (Cutoff) 92

iv

4.2.2.2 Calculation of Equilibrium (Fixbndequil) 93
4.2.2.3 Visualization (Visual) . 93

4.2.3 StabCode . 93
4.2.4 Finalize . 93

4.3 Actors involved . 95
4.4 Setting up Workflow and Actor parameters . 96

4.4.1 Setting workflow parameters . 96
4.4.2 Setting actor parameters . 96

4.5 EQSTABIL Tutorial . 97

5 The EQRECONSTRUCT workflow 99
5.1 1. Workflow rationale . 99
5.2 2. Workflow organization & design . 99

5.2.1 I - START . 100
5.2.2 II - CHECK_DATA . 100
5.2.3 III - Reconstruct . 100
5.2.4 IV - SAVE SLICE . 102

5.3 3. Installing and running the workflow . 103
5.4 4. Setting up the Workflow and Actor parameters . 104

5.4.1 I - Setting the workflow parameters . 104
5.4.2 II - Setting actor parameters . 105

5.5 6. News and Recent activity . 105

6 Turbulence with synthetic diagnostics workflows 107
6.1 HESEL Documentation . 107

6.1.1 HESEL as stand-alone . 108
6.1.1.1 Obtaining and building HESEL . 108
6.1.1.2 HESEL input . 109

6.1.1.2.1 HESEL input . 109
6.1.1.2.2 Profile datafile . 111
6.1.1.2.3 Probe positions . 112

6.1.1.3 HESEL code structure . 112
6.1.1.4 Running a HESEL simulation . 116
6.1.1.5 HESEL output . 116

6.1.2 HESEL as an actor . 123
6.1.3 HESEL in the KEPLER workflow . 124

7 Codes 129
7.1 IMASviz . 129
7.2 IMASgo! . 129
7.3 How to turn a C++ code into a Kepler actor . 130

7.3.1 Adapt your C++ function . 130
7.3.2 How to use code parameters . 131
7.3.3 Compile your function as a library . 131
7.3.4 Full example . 131
7.3.5 How to fill the FC2K window . 133

7.4 Plasma equilibrium and MHD list of codes . 138
7.4.1 Free boundary equilibrium codes . 138
7.4.2 Fixed boundary equilibrium codes . 138
7.4.3 Linear MHD stability codes . 138
7.4.4 Sawtooth Crash Modules . 138
7.4.5 ELM Modules . 138

v

7.4.6 NTM Modules . 138
7.4.7 Numerical Tools . 139

7.5 Heating, current drive (H&CD) and fast particles list of codes 139
7.5.1 Electron heating codes . 139

7.5.1.1 EC wave codes . 139
7.5.1.2 Combined electron Fokker-Planck codes 139
7.5.1.3 Wave codes for ion cyclotron heating 139
7.5.1.4 Fokker-Planck codes for ion cyclotron heating 139
7.5.1.5 NBI sources for Fokker-Planck codes 139
7.5.1.6 Nuclear sources (input for Fokker-Planck codes) 140
7.5.1.7 NBI Fokker-Planck codes . 140
7.5.1.8 Runaway electrons . 140
7.5.1.9 Advanced codes . 140
7.5.1.10 Codes for fast ion-MHD interactions 140

7.6 Transport list of codes . 140

8 Conventions 143
8.1 Standard Machine Names . 143
8.2 Physics Conventions . 143

8.2.1 Coordinate System . 143
8.2.2 Representation of the Magnetic Field and Current 144
8.2.3 Poloidal and Toroidal Fluxes . 145
8.2.4 Safety Factor . 145
8.2.5 Signs . 145
8.2.6 COCOS - toroidal coordinate conventions . 146

8.2.6.1 Equilibrium COCOS transformation library and actor 146
8.2.7 The Flux Surface Average . 146
8.2.8 The Toroidal Flux Radius as the Radial Coordinate 147
8.2.9 Toroidal and Parallel Current . 147
8.2.10 Straight Field Line Coordinates . 148
8.2.11 Plasma Betas . 148
8.2.12 Internal Inductance . 149
8.2.13 Poloidal Angle Dimension in Equilibrium CPO 149

8.3 Numerical and computational conventions . 150
8.3.1 Standardized Variable Types . 150
8.3.2 Standardized Physical Constants . 150
8.3.3 Invalid Data Base Entries . 151
8.3.4 Enumerated datatypes/Identifiers . 151

8.3.4.1 Example: How to fill coresource/values/sourceid 152
8.3.5 Grid Types in Equilibrium CPO . 152

8.3.5.1 Grid Type Identifier . 153
8.3.5.1.1 Poloidal Angle Identifier 153

8.3.6 Standardized EU-EU-IM Plasma Bundle . 153

9 AMNS 157
9.1 Scientific Rationale and Main Objectives . 157
9.2 EU-IM contact person . 157
9.3 AMNS tasks . 157
9.4 AMNS Documentation . 157

9.4.1 AMNS User Interface . 158
9.4.1.1 AMNS User Interface Data Structures 158
9.4.1.2 AMNS User Interface Data Reactions 159

vi

9.4.1.3 AMNS User Interface Data Queries 159
9.4.1.4 AMNS User Interface Data Setting Options 160
9.4.1.5 FORTRAN AMNS User Interface 160

9.4.1.5.1 AMNS User Interface: Fortran Calls 160
9.4.1.5.2 AMNS User Interface Example (Fortran) 162
9.4.1.5.3 AMNS User Interface Example Fortran Makefile 162

9.4.2 C AMNS User Interface . 162
9.4.2.1 AMNS User Interface: C Calls . 162
9.4.2.2 AMNS User Interface Example (C) 164
9.4.2.3 AMNS User Interface Example C Makefile 164

9.4.3 Python AMNS User Interface . 165
9.4.3.1 AMNS User Interface: Python Calls 165
9.4.3.2 AMNS User Interface Example (Python) 165

10 Using the WPCD workflows 167

vii

viii

CHAPTER

ONE

INTRODUCTION TO THE EUROFUSION PROJECT CODE
DEVELOPMENT FOR INTEGRATED MODELLING

The EUROfusion Project on Code Development for Integrated Modelling (WP-CD) supports the
achievement of the European Fusion Roadmap at Horizon 2020 goals, via the development of exist-
ing modelling codes with a particular focus on integrated modelling. The primary objectives of WPCD
are:

1. Provide a suite of codes that can be validated on existing Tokamaks and used for JT-60SA, ITER
and DEMO predictions:

• build on the existing modelling codes developed by the EUROfusion Consortium members
including the Integrated Modelling (EU-IM) infrastructure, toolset and codes developed un-
der the former EFDA ITM Task Force,

• add new physics to the existing models

• couple codes into integrated workflows

• optimize codes.

2. Specific ITER simulation work in support of ITER IO and F4E with specified deliverables.

WPCD operates under a work plan aiming to provide in the long term a full suite of integrated simu-
lation workflows, incorporating core-edge-SOL/PFC coupling, first-principles models and control ele-
ments. A central task is the development of the modular European Transport Simulator, ETS, which is
being deployed to JET and MST modelling infrastructures for validation and application to experimental
analysis.

In addition to code and workflow development, rigorous code verification is also performed under
WPCD, within the EU-IM framework; whereas validation of the released integrated modelling work-
flows against the experiments is performed under WPJET1 and WPMST1.

The Work Package is run as a project and managed by a project leader (M. Romanelli, UKAEA,
michele.romanelli@ukaea.uk)

In 2019 the structure of the project has been reviewed and changed.

The project is now organised into three coordinated areas or subprojects reflecting the present priorities:
Enabling Workflow Exploitation, Workflow Development, Workflow adaptation to IMAS. The Enabling
Workflow Exploitation Area (EWE) will coordinate the development of pre-processing tools for the rou-
tine use of ETS and the equilibrium-MHD-stability workflow in EUROfusion facilities, the development
of visualization tools, synthetic diagnostics and the provision of training to users. The Workflow Devel-
opment Area or subproject will coordinate the continuous development of existing and new workflows
in IMAS addressing specific modelling needs of the other EUROfusion work packages. The Workflow

1

mailto:michele.romanelli@ukaea.uk

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

adaptation to IMAS Area will operate in strong collaboration with ITER IO and will ensure the complete
adaptation of existing workflows to IMAS using the most updated Data Dictionary.

1.1 The European Integrated Modelling (EU-IM) approach

The choice of Integrated Modelling made by the former EFDA ITM and pursued now under EURO-
fusion WPCD is unique and original: it entails the development of a comprehensive and completely
generic tokamak simulator including both the physics and the machine, which can be applied for any
fusion device. The simulation platform was designed to be fully modular, flexible, and independent of
a programming language.The choice of modularity implies that each module contains a single physical
model and that the communication between the modules is standardised: a set of common common
rules (ontology) clearly specify the format of the data to be consistently exchanged between modules
(data-structure). The complexity of coupling the codes together is therefore transferred to the definition
of a generic data-structure (allowing to describe and exchange information concerning both physical
quantities and technical objects, not assuming the origin of those), extensible to allow the integration of
new physics, as well as more elaborate machine geometries and experimental data in the future. A cen-
tral project is the development of the so-called European Transport Simulator (ETS) aimed to meet
all the EU-IM requirements, namely modularity, flexibility and standardized interfaces. In terms of the
physics, the ETS is designed to solve the standard set of one-dimensional time dependent equations
which describe the evolution of the core plasma. The solver itself is designed with a modular approach
enabling the separation of the physics from the numerics, thereby facilitating the testing/usage of the
numerical schemes that best suit a particular physical simulation.

1.2 Mission

The European Integrated Tokamak Modelling Task Force (ITM-TF) operated under EFDA from 2004
until 2013. The main mission of the ITM TF was to provide a software infrastructure framework for
EU integrated modelling activities (EU-IM) as well as a validated suite of simulation codes for the mod-
elling of present experiments, ITER and DEMO plasmas. The ITM TF operated until 2013 under a work
programme formulated to support this goal, structuring the EU modelling effort around existing experi-
ments and ITER scenario prediction while maintaining a long term strategic aim to provide a validated
set of European modelling tools for ITER exploitation. The EU-IM effort was then pursued under the
EUROfusion project WPCD, progressing towards the achievement of a main milestone, “Extended Core
Transport simulator used for analysis of JET1 and MST1 campaigns and developing facilities”.

1.3 Achievements

During the first phase of the EU-IM effort, surveys and cross-verification of the available European
models and numerical codes were performed within the individual integrated modelling projects and the
data-structure was extensively discussed and defined. Equilibrium, linear MHD stability, core transport
and RF wave propagation, as well as the poloidal field systems and a few diagnostics were the first
topics addressed. Data structures were finalised for these and then expanded to address, among others,
non-linear MHD, edge physics, turbulence and neutral beam propagation. In parallel to the development
of the physics concepts, the EU-IM effort developed the tools to manipulate the data structure and use it
in fully flexible and modular simulation workflows. The EU-IM database contains machine descriptions
from JET, Tore Supra, MAST, (as well as FTU, FAST), AUG, ITER, JT-60SA as well as some experi-
mental data from Tore Supra (WEST) and JET. The EU-IM futher achieved the development of the first

2 Chapter 1. Introduction to the EUROfusion Project Code Development for integrated
modelling

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

release version of a fully modular and versatile transport simulator, the ETS, with all the essential func-
tionalities. The validation of the ETS simulator first started in 2010 against the state-of-the-art transport
codes and ETS recently started to be used for the first physics applications. Next steps are the validation
of the simulator for a complete discharge on existing experimental data with the available modules, the
integration of more quantitative physics models (“ab-initio”) and the integration of the whole modelling
of the device.

The main WPCD achievements are listed below: 1. An high-resolution equilibrium and linear MHD sta-
bility chain, for core and pedestal, applicable to peeling-ballooning type instabilities has been released
for the analysis of equilibria from any tokamak integrated in the EU-IM platform, including ITER and
DEMO. A predictive J-alpha MHD pedestal stability analysis workflow has also been developed and is in
test release stage. 2. The fixed boundary core European Transport Simulator ETS, with various equilib-
rium modules and a full hierarchy of transport models, impurities, pellets, neutrals, sawteeth, Neoclassi-
cal Tearing Modes (NTM) modules, and full integration of Heating and Current Drive sources (Electron
Cyclotron, Neutral Beam Injection, Ion Cyclotron, alpha), including synergies has been released.The
released ETS workflow has been implemented in JET modelling infrastructure and went through vali-
dation. 3. A feedback controlled free boundary transport simulator prototype is operational and under
verification. 4. A Scrape-Off-Layer (SOL) turbulence workflow including a synthetic probe, directly
reading from experimental database has been developed and applied to analyse ASDEX-Upgrade diver-
tor power deposition. 5. Benchmarks of EC, IC and NBI codes within the EU-IM infrastructure were
carried out on identified test cases and presented in conference (Topical Conference on Radiofrequency
Power in Plasmas, EPS, IAEA Technical Meeting on Energetic Particles (EP)). 7. Prototypes of self-
consistent coupling between core and edge transport codes were demonstrated, in particular automated
direct coupling of the ETS core transport code to the 2D edge transport code SOLPS. 8. SOLPS tech-
nical optimization studies (parareal algorithm, speed-up techniques, reduced physics models) provided
an assessment of speed-up techniques to be possibly integrated in SOLPS-ITER. 9. A prototype acyclic
workflow for modelling the SOL and interaction with Plasma Facing Components (PFC) was demon-
strated by coupling the 2D transport code SOPLS to the 3D Monte Carlo PWI and impurity transport
code ERO.

1.4 Publications

-G.L. Falchetto, et al., and the EUROfusion-IM Team, MULTI-MACHINE ANALYSIS OF EU EX-
PERIMENTS USING THE EUROFUSION INTEGRATED MODELLING (EU-IM) FRAMEWORK,
P1.1081, 46th EPS conference, Milan, 2019.

-G.I. Pokol, et al., “Runaway electron modelling in the ETS self-consistent core transport simulator”,
Nuclear Fusion 59, 076024 (2019). https://doi.org/10.1088/1741-4326/ab13da

-Y.-S. Na et al.,”On Benchmarking of Simulations of Particle Transport in ITER”, Nuclear Fusion 59
(7), 076026, 2019.

-A.H. Nielsen, et al. “Synthetic edge and SOL diagnostics - a bridge between experiments and the-
ory”, THD/P7-4 IAEA CN-258 2018. https://conferences.iaea.org/indico/event/151/papers/5806/files/
4686-Nielsen-THD-P7-4.pdf, Nuclear Fusion accepted

-R. Coelho, et al., “Plasma equilibrium reconstruction of JET discharges using the IMAS modelling
infrastructure“, TH/P5-27, IAEA CN-258, 2018. https://conferences.iaea.org/indico/event/151/papers/
6136/files/4812-Paper_IAEA_Coelho_v7.pdf

-P. Strand, et al., “Towards a predictive modelling capacity for DT plasmas: European Transport Simu-
lator (ETS) verification and validation“, TH/P6-14, IAEA CN-258, 2018. https://conferences.iaea.org/
indico/event/151/papers/5943/files/4801-IAEA_FEC18_THP6_14_Strand.pdf

1.4. Publications 3

https://doi.org/10.1088/1741-4326/ab13da
https://conferences.iaea.org/indico/event/151/papers/5806/files/4686-Nielsen-THD-P7-4.pdf
https://conferences.iaea.org/indico/event/151/papers/5806/files/4686-Nielsen-THD-P7-4.pdf
https://conferences.iaea.org/indico/event/151/papers/6136/files/4812-Paper_IAEA_Coelho_v7.pdf
https://conferences.iaea.org/indico/event/151/papers/6136/files/4812-Paper_IAEA_Coelho_v7.pdf
https://conferences.iaea.org/indico/event/151/papers/5943/files/4801-IAEA_FEC18_THP6_14_Strand.pdf
https://conferences.iaea.org/indico/event/151/papers/5943/files/4801-IAEA_FEC18_THP6_14_Strand.pdf

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

-S. Nowak, et al., “Analysis and modelling of NTMs dynamics in JET discharges using the
European Transport Simulator (ETS) and integrated modelling tools”, TH/P6-26, IAEA CN-258
2018. https://conferences.iaea.org/indico/event/151/papers/6039/files/4878-64930_snowak_iaea2018_
paper_final_rev.pdf

-G.I. Pokol, et al., “Runaway electron modelling in the ETS self-consistent core transport simula-
tor”, TH/P8-15, IAEA CN-258, 2018. https://conferences.iaea.org/indico/event/151/papers/6162/files/
4621-Pokol_IAEA-FEC_2018-paper.pdf

-V. Basiuk, P. Huynh, A. Merle, S. Nowak, O. Sauter, “Towards self-consistent plasma modelisation
in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients”, Plasma Phys.
Control. Fusion 59 (12), 125012 (2017) https://doi.org/10.1088/1361-6587/aa8c8c

-D. Samaddar, D.P. Coster, X. Bonnin, C. Bergmeister, E. Havlickova, L.A. Berry, W.R. Elwasif, D.B.
Batchelor, “Temporal parallelization of edge plasma simulations using the parareal algorithm and the
SOLPS code”, Computer Physics Communications 221, 19-27 (2017). https://doi.org/10.1016/j.cpc.
2017.07.012

-M. Baelmans, P. Borner, K. Ghoos, G. Samaey, “Efficient code simulation strategies for B2-EIRENE”,
Nuclear Materials and Energy 12, 858-863 (2017) https://doi.org/10.1016/j.nme.2016.10.028

-D.P. Coster, “Exploring the edge operating space of fusion reactors using reduced physics models”,
Nuclear Materials and Energy 12, 1055-1060 (2017) https://doi.org/10.1016/j.nme.2016.12.033

-G.L. Falchetto, et al., and the EUROfusion-IM Team, “EUROfusion Integrated Modelling (EU-IM) ca-
pabilities and selected physics applications”, Proc. 26th IAEA Fusion Energy Conference, Kyoto, Japan,
IAEA CN-234, TH/ P2-13, 2016. https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/
FEC%202016/fec2016-preprints/preprint0362.pdf

-Y.-S. Na et al., “On Benchmarking of Simulations of Particle Transport in ITER”, Proc. 26th IAEA
Fusion Energy Conference, Kyoto, Japan, TH/P2-24, IAEA CN-234, 2016.

-G.L. Falchetto, et al.,and ITM-TF contributors, “The European Integrated Tokamak Modelling (ITM)
effort: achievements and first physics results”, Nuclear Fusion 54, 043018, 2014.

-D. Kalupin et al, “Numerical analysis of JET discharges with the European Transport Simulator”, Nucl.
Fusion 53, 123007, 2013.

-D. Penko “3D tokamak Wall description within ITER Integrated Modelling and Analysis (IMAS)
framework“, Proc. 45th European Physical Society Conference on Plasma Physics (EPS), 2018.

-O. Asunta, R. Coelho, D. Kalupin, T. Johnson, T. Franke and EU-IM Team, “Predictions of neutral
beam current drive in DEMO using BBNBI and ASCOT within the European Transport Simulator”,
42nd EPS 2015, P2.156 ECA Vol. 39E ISBN 2-914771-98-3.

-R. Bilato, N. Bertelli, M. Brambilla, R. Dumont, E.F. Jaeger, T. Johnson, E. Lerche, O. Sauter, D. Van
Eester and L. Villard, “Status of the benchmark activity of ICRF full-wave codes within EUROfusion
WPCD and beyond”, 21st Topical Conference on Radiofrequency Power in Plasmas, 2015.

Some posters describing the ITM-TF achievements were presented in an “ITM EXPO” at the 2011 EPS
fusion conference in Strasbourg.

1.5 Contributors

The EUROfusion-IM Team members are defined in the link: http://euro-fusionscipub.org/eu-im

4 Chapter 1. Introduction to the EUROfusion Project Code Development for integrated
modelling

https://conferences.iaea.org/indico/event/151/papers/6039/files/4878-64930_snowak_iaea2018_paper_final_rev.pdf
https://conferences.iaea.org/indico/event/151/papers/6039/files/4878-64930_snowak_iaea2018_paper_final_rev.pdf
https://conferences.iaea.org/indico/event/151/papers/6162/files/4621-Pokol_IAEA-FEC_2018-paper.pdf
https://conferences.iaea.org/indico/event/151/papers/6162/files/4621-Pokol_IAEA-FEC_2018-paper.pdf
https://doi.org/10.1088/1361-6587/aa8c8c
https://doi.org/10.1016/j.cpc.2017.07.012
https://doi.org/10.1016/j.cpc.2017.07.012
https://doi.org/10.1016/j.nme.2016.10.028
https://doi.org/10.1016/j.nme.2016.12.033
https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202016/fec2016-preprints/preprint0362.pdf
https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202016/fec2016-preprints/preprint0362.pdf
http://euro-fusionscipub.org/eu-im

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

ITM-TF contributors were defined in the Appendix of G.L. Falchetto et al., Nuclear Fusion 54,043018,
2014. This list reproduces the status of of members in 2012 and is not exhaustive. A grateful thank you
to all those who contributed and promoted EU-IM since its beginnigs.

1.6 Glossary

Collaborative Development Environment (CDE) A collaborative development environment (CDE) is
an online meeting space where a software development project’s stakeholders can work together, no
matter what timezone or region they are in, to discuss, document , and produce project deliverables. The
name was coined by Grady Booch.

Consistent Physical Object (CPO) A Consistent Physical Object (CPO) is a physics based, hierar-
chical data structure employed by the EU-IM for a complete description of a physics area, e.g.
equilibrium. All EU-IM code modules interact through the exchange of CPOs. The CPOs also
form the basic block of data written to the EU-IM database.

Content Management System (CMS) A content management system (CMS) is the collection of
procedures used to manage work flow in a collaborative environment. These procedures can be
manual or computer-based. The procedures are designed to:

• Allow for a large number of people to contribute to and share stored data

• Control access to data, based on user roles. User roles define what information each user can
view or edit

• Aid in easy storage and retrieval of data

• Reduce repetitive duplicate input

• Improve the ease of report writing

• Improve communication between usersq

In a CMS, data can be defined as nearly anything - documents, movies, pictures, phone num-
bers, scientific data, etc. CMSs are frequently used for storing, controlling, revising, semantically
enriching, and publishing documentation.

FC2K FC2K is a tool for wrapping a Fortran or C++ source code into a Kepler actor. Before using it,
your physics code should be EU-IM-compliant (i.e. use CPOs as input/output).

Gforge Gforge hosts all projects (software and infrastructure) under the EU-IM.

EUROfusion Gateway The EUROfusion Gateway is a computer cluster presently hosted at CINECA,
Bologna, Italy. It is used as central repository of the EU-IM software, as well as platfrom for
developments and fusion simulations.

EU-IM Portal The EU-IM Portal is the web portal for the EU-IM, i.e. it hosts the EU-IM web pages
and projects under Gforge.

Universal Access Layer (UAL) The UAL (Universal Access Layer) is a multi-language library that
allows exchanging Consistent Physical Objects (CPOs) between various modules, and to write to
an EU-IM database.

actor Modular element within a Kepler scientific workflow. Actors take execution instructions from a
director. In other words, actors specify what processing occurs while the director specifies when
it occurs. In the EU-IM Kepler workflows, most actors are modules which contain physics codes.

1.6. Glossary 5

http://en.wikipedia.org/wiki/Grady_Booch
https://gforge6.eufus.eu
https://portal.eufus.eu/idp/login.php?sp=itm&tok=TeqwPv9

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

calibration The process of adjusting numerical or physical modelling parameters in the computational
model for the purpose of improving agreement with experimental data.

data mapping An XML file containing all the mapping essentials for mapping from a local experimen-
tal database for a specific tokamak device to the EU-IM database. The mapping essentials include
for instance the download method, local signal names, gains and offsets, time base, and eventual
interpolation option to ensure that only one time base is set for each CPO that is built from mul-
tiple local signals. A java code (exp2ITM developed under ISIP), with the MD and DM files as
inputs, is then run to connect to the local device database, retrieve the required experimental data
and populate the EU-IM database instance for that shot/device and dataversion.

director A director controls (or directs) the execution of a workflow, just as a film director oversees a
cast and crew.

error A recognisable deficiency in any phase or activity of modelling and simulation that is not due to
lack of knowledge.

kepler Kepler is a software application for the analysis and modeling of scientific data. Kepler sim-
plifies the effort required to create executable models by using a visual representation of these
processes. These representations, or “scientific workflows”, display the flow of data among dis-
crete analysis and modeling components.

machine description The machine description (MD) of a device builds on the set of engineering and
diagnostic settings characterising a tokamak device. This includes, for instance, the vessel/limiter
description, the PF coils and circuiting and lines of sight of diagnostics. In practice, all MD infor-
mation is encapsulated in an XML file that emanates from the MD tagged datastructure schemas.
An MD instance of a given device is then stored into the EU-IM database as shot 0 for that device
database.

model A representation of a physical system or process intended to enhance our ability to understand,
predict, or control its behaviour.

• A conceptual model consists of the observations, mathematical modelling data, and math-
ematical (e.g., partial differential) equations that describe the physical system. It will also
include initial and boundary conditions.

• The computational model is the computer program or code that implements the conceptual
model. It includes the algorithms and iterative strategies. Parameters for the computational
model include the number of grid points, algorithm inputs, and similar parameters, etc.

modelling The process of construction or modification of a model

prediction Use of a model to foretell the state of a physical system under conditions for which the
model has not been validated.

simulation The exercise or use of a model.

uncertainty A potential deficiency in any phase or activity of the modelling process that is due to the
lack of knowledge.

validation The process of determining the degree to which a model is an accurate representation of the
real world form the perspective of the intended uses of the model.

verification The process of determining that a model implementation accurately represents the devel-
oper’s conceptual description of the model and the solution to the model.

6 Chapter 1. Introduction to the EUROfusion Project Code Development for integrated
modelling

CHAPTER

TWO

INFRASTRUCTURE

The infrastructure documentation is hosted at the link below

https://confluence.man.poznan.pl/community/display/WFMS

In a workflow, physics modules exchange physics data in the form of standardised blocks of information:
the Consistent Physical Objects (CPOs). The list of CPOs as well as their inner structure defines the EU-
IM Data Structure. All physics modules should use these standardised interfaces for I/O.

The most recent datastructure for EU-IM workflows can be browsed at the link below

Data structure 4.10b.10

2.1 Kepler

2.1.1 Introduction to Kepler - basics

Kepler is a workflow engine and design platform for analyzing and modeling scientific data. Kepler pro-
vides a graphical interface and a library of pre-defined components to enable users to construct scientific
workflows which can undertake a wide range of functionality. It is primarily designed to access, analyse,
and visualise scientific data but can be used to construct whole programs or run pre-existing simulation
codes.

Kepler builds upon the mature Ptolemy II framework, developed at the University of California, Berke-
ley. Kepler itself is developed and maintained by the cross-project Kepler collaboration.

The main components in a Kepler workflow are actors, which are used in a design (inherited from
Ptolemy II) that separates workflow components (“actors”) from workflow orchestration (“directors”),
making components more easily reusable. Workflows can work at very levels of granularity, from low-
level workflows (that explicitly move data around or start and monitor remote jobs, for example) to high-
level workflows that interlink complex steps/actors. Actors can be reused to construct more complex
actors enabling complex functionality to be encapsulated in easy to use packages. A wide range of
actors are available for use and reuse.

2.1.1.1 Installing Kepler and tutorial workflows

You can download Kepler from the following page https://kepler-project.org/users/downloads

In order to install Kepler and tutorial related workflows you have to follow the instruction at

https://confluence.man.poznan.pl/community/display/WFMS/5.3.+Kepler+Basics#id-5.3.
KeplerBasics-1InstallingKepler

7

https://confluence.man.poznan.pl/community/display/WFMS
https://kepler-project.org/
https://kepler-project.org/users/downloads
https://confluence.man.poznan.pl/community/display/WFMS/5.3.+Kepler+Basics#id-5.3.KeplerBasics-1InstallingKepler
https://confluence.man.poznan.pl/community/display/WFMS/5.3.+Kepler+Basics#id-5.3.KeplerBasics-1InstallingKepler

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Now you can start Kepler application and proceed to tutorial examples

8 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1. Kepler 9

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.2 Kepler IMAS actors

Imas actor Deacription
UALSliceCollector

Store one slice from input IDS into different run.
This way, it is possible
to collect intermediate results during workflow
execution.

UALPython

Allows to run external Python process and pass
input/output data between workflow
and process itself. This actor is, most
commonly, used for data visualization.
User can pass Python script directly to the actor.

UALMuxParam

Provides similar behavior to ualmux/UALMux,
however, this actors has
two additional ports:

- fieldDescription - contains name of the
filed that will be modified
- fieldValue - contains new value of the
field

Main difference between ualmux/ ualmuxparam
actors lays in it’s ability to be used in
a loop that modify different field inside IDS.
You can simply provide different field name for
different loop’s step.

UALMux

Provides a method for putting data inside IDS
inputs

- inputIds/inputCpo - cpo we are going to
modify
- inTime - time index at which data are
supposed to be updated
- name of the field is specified as port
name
- new value of the field is passed as value
sent to the port

outputs:
- outputIds/outputCpo - modified IDS
- outTime - actual time index (depend on
approximation mode)

UALInit

Initializes input pulse file, creates run work and
provides ID S description
for other actors inputs:

- user - name of the user for input data file
(e.g. g2michal)
- machine - name of the machine for input
data file (e.g. test/jet)
- shot - shot number
- run - run number
- runwork - temporary run number (place
where output will be stored)

outputs:
- error - description of error in case there
are problems while accessing input data
- all IDSess requested by user (each IDS is
specified as output port name)

UALDemux

Allows to read data from given IDS - name of
the field is specified as
output port.

UALCollector

Stores input IDSess inside new run. This way, it
is possible to copy data
into different shot/run rather than inside run
work.

UALClose

Closes run work based on description passed via
input IDS.

SetBreakpoint

This actor allows to enforce “debug” mode for
IMAS based actors. It sets
global parameter “ITM_DEBUG” to either true
or false. In case true is a value
of “ITM_DEBUG” all FC2K generated actors
will start in debug mode.

RecordSet

Sets values inside record (take a look for short
tutorial: RecordGet/RecordSet)

RecordGet

Gets values from the record (take a look here for
short tutorial:
RecordGet/RecordSet)

IDSOccurence

Provides a method to create duplicate of IDS
with new occurrence number.
This way, it is possible to store data before they
get modified by user code.

IDSFlush

Flushes data from workflow. Data from memory
cache are stored inside database

IDSDiscard

Discards data inside workflow. Data will be
re-read into memory cache.

IDSContentStd

Displays IDS data on console (better for huge
data sets)

IDSContent

Displays IDS data

10 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.3 IMAS Kepler based configuration

2.1.3.1 Running Kepler using IMAS environment

2.1.3.1.1 Setting up environment

Please do not forget to set JAVA memory settings:

export _JAVA_OPTIONS="-Xss20m -Xms8g -Xmx8g"

2.1.3.1.1.1 Backing up old files

Before first configuration of Kepler, make sure to backup your old data files

cd ~
mv .kepler .kepler~
mv KeplerData KeplerData~
mv .ptolemyII .ptolemyII~

2.1.3.1.2 Creating place to store your personal installations of Kepler

IMAS based installations are stored inside $HOME/kepler directory.

Before proceeding further, make sure to create kepler directory

create directory inside $HOME
cd ~
mkdir kepler

2.1.3.1.3 Running Kepler (default release)

In order to start Kepler you have use helper scripts that will install and configure your personal copy of Kepler

• load IMAS module

module load imas
module load kepler
NOTE! It might be that you don't have Kepler copy inside your $HOME
in that case you need to install it kepler_install_light

• Start Kepler

run alias that will execute Kepler
kepler

2.1.4 FC2K - Embedding user codes into Kepler

This tutorial is designed to introduce the concept of using FC2K tool in order to build Kepler compatible
actors.

2.1. Kepler 11

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

This tutorial explains
how to set up codes for FC2K
how to build actor using FC2K
how to incorporate actor within Kepler workflow

2.1.4.1 FC2K basics

2.1.4.1.1 What FC2K actually does?

• Generates a Fortran/CPP wrapper, which intermediates between Kepler actor and user code in
terms of:

– reading/writing of in/out physical data (IDS)

– passing arguments of standard types to/from the actor

• Creates a Kepler actor that:

– calls a user code

– provides error handling

– calls debugger (if run in “debug” mode)

– calls batch submission commands for MPI based actors

2.1.4.1.2 FC2K main window

12 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.4.1.3 Actor description

This group of graphical controls allows to set the description of the actor and its “place” in hierarchy of
Kepler elements in Kepler “Component” browser

• Project - defines a branch in Kepler “Component” browser where an actor will be placed

• Name - a user defined name of the actor

• Version - a user defined version of user codes

• Subroutine - A name of user subroutine (Fortran) or function (C++)

2.1.4.1.4 Environment

The Environment text fields shows UAL and Kepler locations.

• Kepler - Kepler location (usually the same as $KEPLER)

• UAL - IMAS UAL location (usually the same as $IMAS_PREFIX)

2.1.4.1.5 “Arguments” tab explained

Below you can find explanation of FC2K arguments tab.

• Type - Defines a type of an argument. It is possible to choose either IDS based type (e.g. equilib-
rium, topinfo, etc.) or primitive type (e.g. int, long, double, char)

2.1. Kepler 13

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• Single slice - Determines if IDS is passed as single slice or an array. (This setting is valid for IDS
types only)

– if turned ON - Only one slice is passed. An actor will get an additional port to define a time.

– if turned OFF - All IDSes for given shot run is passed.

• Is array - Determines if a primitive type is passed as a scalar or an array

– if turned ON - An argument is passed as an array. It requires definition of array size (dynamic
array are not supported)

– if turned OFF - An argument is passed as a scalar.

• Array size - Defines the size of an array of primitive types

• Input - Defines argument as an input

• Output - Defines argument as an output

• Label - User defined name of an argument (and actor port)

Please take a look on a screenshot above:

• equilibrium - an input parameter - one IDS (slice)

• amns - an input parameter - all amns IDS slices stored in given shot/run

• integer - an input parameter - a scalar

• double - an input parameter - an array of size 10

• edge - an in/out parameter - single slice of “edge” IDS

• waves - an output parameter - all slices of “waves” IDS

2.1.4.1.6 “Parameters” tab explained

Code specific parameters are all parameters which are specific to the code (like switches, scaling param-
eters, and parameters for built-in analytical models) as well as parameters to explicitly overrule fields in
the ITM data structures.

14 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• Frequently Used XML - Actual value of the code parameters

• Default XML - Default values of the code parameters

• Schema - A (XSD) XML schema

2.1.4.1.7 “Source” tab explained

The purpose of this tab is to define all code related issues:

• a programming language

• utilized compiler,

• type of code execution (sequential of parallel)

• libraries being used

2.1.4.1.7.1 Libraries

“Main library”

A “Main library” field allows to define a path to library containing user subroutine/function.

“Optional library”

2.1. Kepler 15

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

A “Optional library” field allows to define a path to optional library containing user subroutine/function.

“Custom libraries”

“Custom libraries” are non-standard static libraries required for building the user code.

Available operations on libraries list:

• “Add...” - Adds a new library to the list

• “Edit...” - Edits library path

• “Remove” - Removes a new library from the list

“System libraries”

“System libraries” are system libraries handled by pkg-config mechanism and required for building the
user code.

A user can:

• add library from the list,

• remove library

• display detailed info (library definition returned by pkg-config mechanism)

16 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.4.1.8 “Settings” tab explained

A user, using this tab, selects programming language of codes provided, compiler used to built library
and type of code execution (sequential or parallel)

• Programming languange:

– Type - Defines programming language of user codes. It could be set to:

* Fortran

* _C/C++

• Compiler - Defines compiler being used. Possible values:

– ifort, gfortran

2.1. Kepler 17

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

– gcc, g++

• Computation:

– Parallel MPI - If turned ON uses MPI compilers (mpiifort for ifort, mpif90 for gfortran,
mpigxx for C)

– OPENMP - Defined if usage of OpenMP directives is turned ON/OFF

– Batch - If turned ON, submits a user code to jobs queue (combined with Parallel MPI or
OPENMP switch runs user code as parallel job)

• Additional features:

– Calls init method - If user function needs any pre-initialization, an additional function will
be called.

– Returns diagnostic info - adds output diagnostic information

2.1.4.1.9 “Documentation” tab explained

The “Documentation” tab specifies an user-defined Kepler actor description. It could be displayed from
actor pop-up menu.

2.1.4.1.10 “Interface” tab explained

The “Interface” tab specifies interface for Kepler actor.

18 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.4.2 Incorporating user codes into Kepler using FC2K - exercises

In this part of the tutorial you will learn how to incorporate Fortran and C++ codes into Kepler.

Hands-on exercises show:

• how to prepare C++ codes for FC2K

• how to prepare C++ library

• how set up Makefile

• how start and configure FC2K tool

2.1.4.2.1 Embedding Fortran codes into Kepler

Simple Fortran code

In this exercise you will execute simple Fortran code (multiplying input value by two) within Kepler.

Exercise1

Fortran UAL example (CPO handling)

In this exercise you will create Kepler actor that uses UAL.

Exercise2

2.1.4.2.2 Embedding C++ codes

Simple C++ code

Simple C++ code that will be incorporated into Kepler via FC2K tool - addition of one to the value
passed into input port of the actor

Exercise3

C++ code within Kepler (CPO)

In this exercise you will create Kepler actor that uses UAL.

Exercise4

2.1.5 FC2K - developer guidelines

2.1.5.1 What code wrapper actually does?

The code wrapper intermediates between Kepler actor and user code:

• Passes variables of language built-in types (int, char, etc) from actor to the code

• Reads CPO(s) from UAL and passes data to user code

• Passes input code parameters (XML/XSD files) to user code

• Calls user subroutine/function

• Saves output CPO(s)

2.1. Kepler 19

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.5.2 Development of Fortran codes

2.1.5.2.1 Subroutine syntax

subroutine name (<in/out arguments list> [,code_parameters] [,diagnostic_info])

• name - subroutine name

• in/out arguments list - a list of input and output subroutine arguments

• diagnostic_info - arbitrary output diagnostic information

2.1.5.2.2 Arguments list

• A mandatory position

• A list of input and output subroutine arguments including:

– Fortran intrisic data types, eg:

* integer :: input

* character(50) :: charstring

* integer,dimension(4) :: tabint

– CPOs, eg:

* type (type_equilibrium),pointer :: equilibriumin(:)

* type (type_distsource),pointer :: distsourceout(:)

2.1.5.2.3 Code parameters

• user defined input parameters

• input / optional

• Argument of type: type_param

type type_param !
character(len=132), dimension(:), pointer ::parameters
character(len=132), dimension(:), pointer ::default_param
character(len=132), dimension(:), pointer ::schema

endtype

• Derived type type_param describes:

– parameters - Actual value of the code parameters (instance of coparam/parameters in XML
format).

– default_param - Default value of the code parameters (instance of coparam/parameters in
XML format).

– schema - Code parameters schema.

• An example:

– (type_param) :: codeparam{{

20 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.5.2.4 Diagnostic info

• arbitrary output diagnostic information

– output / optional

!---- Diagnostic info ----
integer, intent(out) :: user_out_outputFlag
character(len=:), pointer, intent(out) :: user_out_diagnosticInfo

• outputFlag - indicates if user subroutine was successfully executed

– outpuflag = 0 - SUCCESS, no action is taken

– outputFlag > 0 - WARNING, a warning message is displayed, workflow continuue execution

– outputFlag < 0 - ERROR, actor throws an exception, workflow stops

• diagnosticInfo - an arbitrary string

2.1.5.2.5 Examples

Example 1 Simple in/out argument types
subroutine nocpo(input, output)

integer, intent(in):: input
integer, intent(out):: output

Example 2 A CPO array as a subroutine argument
subroutine equil2dist(equilibriumin, distsourceout)

use euITM_schemas
implicit none

!input
type (type_equilibrium), pointer :: equilibriumin(:)
!output
type (type_distsource), pointer :: distsourceout(:)

Example 3 Usage of code input parameters
subroutine teststring(coreprof,equi,tabint,tabchar,codeparam)

use euITM_schemas

implicit none

!input
type(type_coreprof),pointer,dimension(:) :: coreprof
integer, dimension(4), intent(in) :: tabint

!output
type(type_equilibrium),pointer,dimension(:) :: equi
character(50), intent(out) :: tabchar

!code parameters
type(type_param), intent(in) :: codeparam

2.1.5.3 Development of C++ codes

2.1.5.3.1 Function syntax

void name (<in/out arguments list> [,code_parameters] [,diagnostic_info])

• name - function name

2.1. Kepler 21

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• code_parameters - optional - user defined input parameters

• diagnostic_info - arbitrary output diagnostic information

2.1.5.3.2 Arguments list

• in/out arguments list

• mandatory

• a list of input and output function arguments including:

– CPP intrisic data types, eg:

* int &x

* double &y

– CPOs, eg:

* ItmNs::Itm::antennas & ant

* ItmNs::Itm::equilibriumArray & eq

2.1.5.3.3 Code parameters

• Optional

• User defined input parameters

• Argument of type: ItmNs:: codeparam_t &

typedef struct {
char **parameters;
char **default_param;
char **schema;

} codeparam_t;

• A structure codeparam_t describes:

– parameters - Actual value of the code parameters (instance of coparam/parameters in XML
format).

– default_param - Default value of the code parameters (instance of coparam/parameters in
XML format).

– schema - Code parameters schema.

• An example: ItmNs::codeparam_t & codeparam

2.1.5.3.4 Diagnostic info

• arbitrary output diagnostic information

• output / optional

void name(...., int* output_flag, char** diagnostic_info)

• output_flag - indicates if user subroutine was successfully executed

22 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

– output_flag = 0 - SUCCESS, no action is taken

– output_flag > 0 - WARNING, a warning message is displayed, workflow contin-
uue execution

– output_flag < 0 - ERROR, actor throws an exception, workflow stops

• diagnostic_info - an arbitrary string

2.1.5.3.5 Examples

Example 4. Simple in/out argument types
void simplecppactornocpo(double &x, double &y)

Example 5. A CPO array as a function argument
void simplecppactor(ItmNs::Itm::equilibriumArray &eq, double &x, double &y)

Example 6. Usage of init function and code input parameters
void mycppfunctionbis_init();
void mycppfunction(ItmNs::Itm::summary& sum, ItmNs::Itm::equilibriumArray& eq, int& x,
→˓ItmNs::Itm::coreimpur& cor, double& y, ItmNs::codeparam_t& codeparam)

2.1.5.4 Delivery of the user code

The user code should be delivered as a static library. Please find examples of the simple “makefiles”
below:

Example 6. Building of Fortran code
F90 = $(ITM_INTEL_FC)
COPTS = -g -O0 -assume no2underscore -fPIC -shared-intel

INCLUDES = $(shell eval-pkg-config --cflags ual-$(ITM_INTEL_OBJECTCODE))

all: equilibrium2distsource.o libequilibrium2distsource

libequilibrium2distsource: equilibrium2distsource.o
ar -rvs libequilibrium2distsource.a equilibrium2distsource.o

equilibrium2distsource.o: equilibrium2distsource.f90
$(F90) $(COPTS) -c -o $@ $^ ${INCLUDES}

clean:
rm -f *.o *.a

Example 7. Building of C++ code
CXX=g++
CXXFLAGS= -g -fPIC
CXXINCLUDES= ${shell eval-pkg-config --cflags ual-cpp-gnu}

all: libsimplecppactor.a

libsimplecppactor.a: simplecppactor.o
ar -rvs $@ $^

simplecppactor.o: simplecppactor.cpp
$(CXX) $(CXXFLAGS) $(CXXINCLUDES) -c -o $@ $^

clean:
rm *.a *.o

2.1. Kepler 23

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.6 FC2K - Example 1 - Embedding Fortran codes into Kepler (no CPOs)

The knowledge gained After this exercise you will:

• know how to prepare Fortran codes for FC2K

• know how to build Fortran library

• know how set up Makefile

• know how start and configure FC2K tool

In this exercise you will execute simple Fortran code within Kepler. In order to this follow the instruc-
tions:

2.1.6.1 Get familiar with codes that will be incorporated into Kepler

Go to Code Camp related materials within your home directory

shell> cd $TUTORIAL_DIR/FC2K/nocpo_example_1

You can find there various files. Pay particular attention to following ones:

• nocpo.f90 - Fortran source code that will be executed from Kepler

• Makefile - makefile that allows to build library file

• nocpo_fc2k.xml - parameters for FC2K application (NOTE! this file contains my own settings,
we will modify them during tutorial)

• nocpo.xml - example workflow

2.1.6.2 Build the code by issuing

shell> make clean
shell> make

Codes are ready to be used within FC2K

2.1.6.3 Prepare environment for FC2K

Make sure that all required system settings are correctly set

shell> source $ITMSCRIPTDIR/ITMv1 kepler test 4.10b > /dev/null

2.1.6.4 Start FC2K application

This is as simple as typing fc2k from terminal

shell> fc2k

After a while, you should see FC2K’s main window.

24 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.6.5 Open a nocpo_example_1 project

1. Choose File -> Open and navigate to $TUTORIAL_DIR/FC2K/nocpo_example_1.

2. Open file nocpo_fc2k.xml.

3. You should see new parameter settings loaded into FC2K.

4. After loading parameters you can notice that parameters point to locations within your home
directory.

2.1.6.6 Project settings

Please take a look at the project settings.

Subroutine arguments:

• one input argument of type integer

• one output argument of type integer

2.1. Kepler 25

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.6.7 After all the settings are correct, you can generate actor

Simply press “Generate” button and wait till FC2K finishes the generation.

2.1.6.8 Confirm Kepler compilation

After actor is generated, FC2K offers to compile Kepler application. Make sure to compile it by pressing
“Yes”.

2.1.6.9 You can now start Kepler and use generated actor

Open new terminal window and make sure that all environment settings are correctly set and execute
Kepler.

shell> source $ITMSCRIPTDIR/ITMv1 kepler test 4.10b > /dev/null
shell> kepler.sh

After Kepler is started, open example workflow from the following location

$TUTORIAL_DIR/FC2K/nocpo_example_1/nocpo.xml

You should see similar workflow on screen.

26 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.6.10 Launch the workflow

You can start the workflow execution, by pressing “Play” button

After workflow finishes it’s execution, you should see result similar to one below:

Exercise no. 1 finishes here.

2.1.7 FC2K - Example 2 - Embedding Fortran code into Kepler (CPOs)

Exercise no. 2.

Fortran example (CPO handling)

(approx. 30 min)

The knowledge gained

2.1. Kepler 27

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

After this exercise you will:

• know how to prepare Fortran codes that use UAL

• know how to prepare Fortran based library that uses UAL

• know how set up Makefile

• know how start and configure FC2K tool

In this exercise you will execute simple Fortran code that uses UAL. Code will be incorporated into
Kepler. In order to do this follow the instructions:

2.1.7.1 Get familiar with codes that will be incorporated into Kepler

Go to Code Camp related materials within your home directory

shell> cd $TUTORIAL_DIR/FC2K/equilibrium2distsource/

You can find there various files. Pay particular attention to following ones:

• equilibrium2distsource.f90 - Fortran source code that will be executed fromKepler - this code uses
UAL

• Makefile - makefile that allows to build library file

• cposlice2cposlicef_fc2k.xml - parameters for FC2K application (NOTE! this file contains my own
settings, we will modify them during tutorial)

• cposlice2cposlicef_kepler.xml - example workflow

2.1.7.2 Build the code

A Fortran example could be built by issuing

shell> make clean -f make_ifort
shell> make -f make_ifort

Codes are ready to be used within FC2K

2.1.7.3 Prepare environment for FC2K

Make sure that all required system settings are correctly set

shell> source $ITMSCRIPTDIR/ITMv1 kepler test 4.10b > /dev/null

2.1.7.4 Start FC2K application

This is as simple as typing fc2k from terminal

shell> fc2k

After a while, you should see FC2K’s main window

28 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.7.5 Open project cposlice2cposlicef_fc2k

1. Choose File -> Open

2. Navigate to $TUTORIAL_DIR/FC2K/equilibrium2distsource/.

3. Open file cposlice2cposlicef_fc2k.xml.

4. You should see new project loaded into FC2K.

2.1.7.6 Project settings

Please take a look at the project settings.

Subroutine arguments:

• one input argument - CPO array

• one output argument - CPO array

2.1. Kepler 29

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

After loading parameters you can notice that library location points to location within your itmwork
directory ($ITMWORK).

2.1.7.7 After all the settings are correct, you can generate actor

Simply press “Generate” button and wait till FC2K finishes the generation.

2.1.7.8 Confirm Kepler compilation

After actor is generated, FC2K offers to compile Kepler application. Make sure to compile it by pressing
“Yes”.

2.1.7.9 You can now start Kepler and use generated actor

Open new terminal window and make sure that all environment settings are correctly set and execute
Kepler.

shell> source $ITMSCRIPTDIR/ITMv1 kepler test 4.10b > /dev/null
shell> kepler.sh

After Kepler is started, open example workflow from the following location

shell> $TUTORIAL_DIR/FC2K/equilibrium2distsource/cposlice2cposlicef_kepler.xml

You should see similar workflow on screen.

30 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.7.10 Launch the workflow

You can start the workflow execution, by pressing “Play” button

After workflow finishes it’s execution, you should see result similar to one below:

2.1. Kepler 31

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Exercise no. 2 finishes here.

2.1.8 FC2K - Example 3 - Embedding C++ code within Kepler (no CPOs)

Exercise no. 3

Embedding simple C++ code within Kepler (no CPOs)

(approx. 30 min)

The knowledge gained After this exercise you will:

• know how to prepare C++ codes for FC2K

• know how to prepare C++ library

• know how set up Makefile

• know how start and configure FC2K tool

In this exercise you will execute simple C++ code within Kepler. In order to do this follow the instruc-
tions:

2.1.8.1 Get familiar with codes that will be incorporated into Kepler

Go to Code Camp related materials within your home directory

32 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

cd $TUTORIAL_DIR/FC2K/simplecppactor_nocpo

You can find there various files. Pay particular attention to following ones:

• simplecppactornocpo.cpp - C++ source code that will be executed from Kepler

• Makefile - makefile that allows to build library file

• simplecppactor_nocpo_fc2k.xml - parameters for FC2K application (NOTE! this file contains my
own settings, we will modify them during tutorial)

• simplecppactor_nocpo_workflow.xml - example workflow

2.1.8.2 Build the code by issuing

shell> make clean
shell> make

Codes are ready to be used within FC2K

2.1.8.3 Prepare environment for FC2K

Make sure that all required system settings are correctly set

shell> source $ITMSCRIPTDIR/ITMv1 kepler test 4.10b > /dev/null

2.1.8.4 Start FC2K application

This is as simple as typing fc2k from terminal

shell> fc2k

After a while, you should see FC2K’s main window

2.1.8.5 Open project simplecppactor_nocpo

1. Choose File -> Open

2. Navigate to $TUTORIAL_DIR/FC2K/simplecppactor_nocpo

3. Open file simplecppactor_nocpo_fc2k.xml.

4. You should see new project loaded into FC2K.

2.1. Kepler 33

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.8.6 Project settings

Please take a look at the project settings.

Function arguments:

• one input argument - double

• one output argument - double

34 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

After loading parameters you can notice that library location points to location within your $TUTO-
RIAL_DIR directory.

2.1.8.7 Actor generation

After all the settings are correct, you can generate actor

Simply press “Generate” button and wait till FC2K finishes the generation.

2.1.8.8 Confirm Kepler compilation

After actor is generated, FC2K offers to compile Kepler application. Make sure to compile it by pressing
“Yes”.

2.1.8.9 You can now start Kepler and use generated actor

Open new terminal window and make sure that all environment settings are correctly set and execute
Kepler.

shell> source $ITMSCRIPTDIR/ITMv1 kepler test 4.10b > /dev/null
shell> kepler

After Kepler is started, open example workflow from the following location

$TUTORIAL_DIR/FC2K/simplecppactor_nocpo/simplecppactor_nocpo_workflow.xml

You should see similar workflow on screen.

2.1. Kepler 35

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.8.10 Launch the workflow

You can start the workflow, by pressing “Play” button

After workflow finishes it’s execution, you should see result similar to one below:

Exercise no. 3 finishes here.

2.1.9 FC2K - Example 4 - Embedding C++ code within Kepler (CPOs)

Exercise no. 4

36 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

C++ code within Kepler (CPO handling)

(approx. 30 min)

The knowledge gained: After this exercise you will: - know how to prepare C++ codes for FC2K -
know how to prepare C++ library - know how set up Makefile - know how start and configure FC2K
tool In this exercise you will execute simple C++ code within Kepler. In order to do this follow the
instructions:

2.1.9.1 Get familiar with codes that will be incorporated into Kepler

Go to Code Camp related materials within your home directory

shell> cd $TUTORIAL_DIR/FC2K/simplecppactor

You can find there various files. Pay particular attention to following ones:

• simplecppactor.cpp - C++ source code that will be executed from Kepler

• Makefile - makefile that allows to build library file

• simplecppactor_fc2k.xml - parameters for FC2K application (NOTE! this file contains my own
settings, we will modify them during tutorial)

• simplecppactor_workflow.xml - example workflow

2.1.9.2 Build the code by issuing

shell> make clean
shell> make

Codes are ready to be used within FC2K

2.1.9.3 Prepare environment for FC2K

Make sure that all required system settings are correctly set

shell> source $ITMSCRIPTDIR/ITMv1 kepler test 4.10b > /dev/null

2.1.9.4 Start FC2K application

This is as simple as typing fc2k from terminal

shell> fc2k

After a while, you should see FC2K’s main window.

2.1.9.5 Open project simplecppactor

1. Choose File -> Open

2. Navigate to $TUTORIAL_DIR/FC2K/simplecppactor.

3. Open file simplecppactor_fc2k.xml.

2.1. Kepler 37

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

4. You should see new parameter settings loaded into FC2K.

2.1.9.6 Project settings

Please take a look at the project settings.

Function arguments:

• input argument - equilibrium

• input argument - double

• output argument - double

38 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

You should modify these setting, so they point to locations within you home directory. They will typi-
cally be as follows:

2.1.9.7 Actor generation

After all the settings are correct, you can generate actor Simply press “Generate” button and wait till
FC2K finishes the generation.

2.1.9.8 Confirm Kepler compilation

After actor is generated, FC2K offers to compile Kepler application. Make sure to compile it by pressing
“Yes”.

2.1. Kepler 39

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.9.9 You can now start Kepler and use generated actor

Open new terminal window and make sure that all environment settings are correctly set and execute
Kepler.

shell> source $ITMSCRIPTDIR/ITMv1 kepler test 4.10b > /dev/null
kepler.sh

After Kepler is started, open example workflow from the following location

shell> $TUTORIAL_DIR/FC2K/simplecppactor/simplecppactor_workflow.xml

You should see similar workflow on screen.

Launch the workflow

You can start the workflow, by pressing “Play” button

After workflow finishes it’s execution, you should see result similar to one below:

Exercise no. 4 finishes here.

40 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.1.10 IMAS Kepler 2.1.3 (default release)

2.1.10.1 Installation of default version of Kepler (without actors)

In order to use most recent version of Kepler do following. First of all make sure you have directory
imas-kepler inside your $HOME

in case you already have imas-kepler inside $HOME
you can move it to $ITMWORK/imas-kepler
> mv $HOME/imas-kepler $ITMWORK/imas-kepler

If you don't have $HOME/imas-kepler directory, create
it inside $ITMWORK
> mkdir $ITMWORK/imas-kepler

create symbolic link inside $HOME
> cd $HOME
> ln -s $ITMWORK/imas-kepler

Then, you can load imasenv module by calling

> module load imasenv

If there is no Kepler version installed, you will be informed by message

WARNING: Cannot find /afs/eufus.eu/user/..../imas-kepler/2.5p2-2.1.3... Run kepler_install_
→˓light before running kepler;
INFO: setting KEPLER=/gw/swimas/extra/kepler/2.5p2-2.1.3;
IMAS environment loaded.
Please do not forget to set database by calling 'imasdb <machine_name>' !

In that case, call kepler_install_light - you will see installation process running in your terminal.

> kepler_install_light
Warning: $KEPLER_INSTALL_PATH override by environment: /afs/eufus.eu/user/g/g2michal/imas-
→˓kepler/2.5p2-2.1.3
mkdir: created directory ?/afs/eufus.eu/g2itmdev/user/g2michal/imas-kepler/2.5p2-2.1.3?
sending incremental file list
.ptolemy-compiled
build-area/
build-area/README.txt
build-area/build.xml
build-area/current-suite.txt
...
...
...
?gui? -> ?gui-2.5?
?common? -> ?common-2.5?
Done installing /afs/eufus.eu/g2itmdev/user/g2michal/imas-kepler/2.5p2-2.1.3.
Run `module switch kepler/2.5p2-2.1.3` to update $KEPLER to match.
Then run `kepler` to try your lightweight installation.

You have to switch module, to make sure that KEPLER variable points to proper location.

> module switch kepler/2.5p2-2.1.3

Once you have set version of Kepler, you can run it by typing kepler

> kepler
The base dir is /afs/eufus.eu/g2itmdev/user/g2michal/imas-kepler/2.5p2-2.1.3
Kepler.run going to run.setMain(org.kepler.Kepler)
JVM Memory: min = 1G, max = 8G, stack = 20m, maxPermGen = default
adding $CLASSPATH to RunClassPath: /gw/switm/jaxfront/R1.0/XMLParamForm.jar:/gw/switm/
→˓jaxfront/R1.0/jaxfront-core.jar:/gw/switm/jaxfront/R1.0/jaxfront-swing.jar:/gw/switm/
→˓jaxfront/R1.0/xercesImpl.jar:/gw/swimas/core/imas/3.20.0/ual/3.8.3/jar/imas.jar
...

2.1. Kepler 41

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

...

2.1.10.2 Installation of “dressed” version of Kepler (with actors)

In order to use most recent version of Kepler (with actors) do following. First of all make sure you have
directory imas-kepler inside your $HOME

> mkdir $HOME/imas-kepler

Then, you can load imasenv module by calling

> module load imasenv

If there is no Kepler version installed, you will be informed by message

WARNING: Cannot find /afs/eufus.eu/user/..../imas-kepler/2.5p2-2.1.3... Run kepler_install_
→˓light before running kepler;
INFO: setting KEPLER=/gw/swimas/extra/kepler/2.5p2-2.1.3;
IMAS environment loaded.
Please do not forget to set database by calling 'imasdb <machine_name>' !

You have to switch to “dressed” version of Kepler by calling

> module switch kepler/2.5p2-2.1.3_IMAS_3.20.0

> kepler_install_light
Warning: $KEPLER_INSTALL_PATH override by environment: /afs/eufus.eu/user/g/g2michal/imas-
→˓kepler/2.5p2-2.1.3_IMAS_3.20.0
mkdir: created directory ?/afs/eufus.eu/g2itmdev/user/g2michal/imas-kepler?
mkdir: created directory ?/afs/eufus.eu/g2itmdev/user/g2michal/imas-kepler/2.5p2-2.1.3_IMAS_3.
→˓20.0?
...
...
Done installing /afs/eufus.eu/g2itmdev/user/g2michal/imas-kepler/2.5p2-2.1.3_IMAS_3.20.0.
Run `module switch kepler/2.5p2-2.1.3_IMAS_3.20.0` to update $KEPLER to match.
Then run `kepler` to try your lightweight installation.

You have to switch module, to make sure that KEPLER variable points to proper location.

> module switch kepler/2.5p2-2.1.3_IMAS_3.20.0

Once you have set version of Kepler, you can run it by typing kepler

> kepler
The base dir is /afs/eufus.eu/g2itmdev/user/g2michal/imas-kepler/2.5p2-2.1.3_IMAS_3.20.0
Kepler.run going to run.setMain(org.kepler.Kepler)
JVM Memory: min = 1G, max = 8G, stack = 20m, maxPermGen = default
...
...

2.1.11 IMAS Kepler 2.1.5 (release candidate)

Most recent steps for Gateway users

In order to use most recent version of Kepler do following. First of all make sure you have directory
imas-kepler inside your $HOME

42 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

> mkdir -p $HOME/imas-kepler/modulefiles

Make sure to set IMAS_KEPLER_DIR variable inside .cshrc file

> echo "setenv IMAS_KEPLER_DIR $HOME/imas-kepler" >> ~/.cshrc

Now, you can load imasenv/3.21.0 module by calling

> module load imasenv/3.21.0

Note that this module uses kepler/2.5p2-2.1.5 instead of kepler/2.5p2-2.1.3

> module load imasenv/3.21.0
IMAS environment loaded.
Please do not forget to set database by calling 'imasdb <machine_name>' !

Now, you can install your personal Kepler installation (please note that since release 2.5p-2.1.5 and
keplertools-1.7.0 it is possible to switch between different installations of Kepler (they will not collide).

> kepler_install my_own_kepler
Using IMAS_KEPLER_DIR at: /pfs/work/g2michal/imas-keplers.
Using KEPLER_SRC from KEPLER: /gw/swimas/extra/kepler/2.5p2-2.1.5.
mkdir: created directory ?/pfs/work/g2michal/imas-keplers/my_own_kepler
mkdir: created directory ?/pfs/work/g2michal/imas-keplers/my_own_kepler/.kepler?
mkdir: created directory ?/pfs/work/g2michal/imas-keplers/my_own_kepler/.ptolemyII?
mkdir: created directory ?/pfs/work/g2michal/imas-keplers/my_own_kepler/KeplerData?
Done installing /pfs/work/g2michal/imas-keplers/my_own_kepler/kepler.
?/gw/swimas/extra/keplertools/1.7.0/share/modulefiles/kepler? -> ?/pfs/work/g2michal/imas-
→˓keplers/modulefiles/kepler/my_own_kepler?

Kepler was installed inside /pfs/work/g2michal/imas-keplers/my_own_kepler
Its module file is: /pfs/work/g2michal/imas-keplers/modulefiles/kepler/my_own_kepler
To load this environment, run: module switch kepler/my_own_kepler
To see available installations: module avail kepler

As you can see, your personal Kepler installations are available via modules. In order to switch to given
version of Kepler you need to switch the module

> module switch kepler/my_own_kepler

Once you have set version of Kepler, you can run it by typing kepler

> kepler
kepler
The base dir is /marconi_work/eufus_gw/work/g2michal/imas-keplers/my_own_kepler/kepler
Kepler.run going to run.setMain(org.kepler.Kepler)
JVM Memory: min = 1G, max = 8G, stack = 20m, maxPermGen = default
...
...

2.1.12 Installation based on README file

Installation instructions based on most recent version of IMAS Kepler

Detailed, up to date, instructions on how to install and switch between different installations of Kepler,
can be found here

> git clone ssh://git@git.iter.org/imex/kepler-installer.git

> cat kepler-installer/README

2.1. Kepler 43

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

You can also find latest documentation at following location (Gateway)

> cat $SWIMASDIR/extra/kepler-installer/README

2.2 General Grid Description and Grid Service Library

2.2.1 Resources

• GForge project page

• Linking to library: general , specific

• A tutorial talk. Note: some slides might be out of date, please refer to the documentation.

2.2.2 Documentation

• 4.09a Resources: Sources, Fortran Examples

Documentation:

– Release v1.2: Fortran 90 , Python , ualconnector ,

• 4.10a Resources: Sources, Fortran Examples

Documentation:

– Release v1.2: Fortran 90 , Python , ualconnector ,

2.2.3 Outdated documentation

This section collects information and documentation related to the general grid description.

• Some presentations:

– A tutorial talk from 2011 ,

– General Meeting 2011: Short overview talk and detailed presentation

• Instructions how to get a copy of the Grid Service Library

• Documentation for the EU-IM Grid Service Library: Fortran 90 , Python

• A short manual for ualconnector and VisIt

Some examples are included in the Grid Service Library distribution.

2.2.3.1 Example grids

2.2.3.1.1 Example grid details

This section describes a number of example grids and gives some examples for specific constructs (object
lists, subgrids).

44 Chapter 2. Infrastructure

https://gforge6.eufus.eu/svn/itmggd/branches/4.09a/
https://gforge6.eufus.eu/svn/itmggd/branches/4.09a/f90/src/examples/
https://gforge6.eufus.eu/svn/itmggd/branches/4.10a/
https://gforge6.eufus.eu/svn/itmggd/branches/4.10a/f90/src/examples/

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.2.3.1.1.1 Example Grid #1: 2d structured R,Z grid

Note: the grids shown here are used in the unit tests of the grid service library implementation, i.e. the
automated testing framework.

A 2d grid in (R,Z) constructed by combining two structured one-dimensional spaces. The spaces are
defined as follows, they define nodes and edges as subobjects.

The whole grid then looks like this (attention, slightly differing scales in R and Z):

A couple of examples for object descriptor are given. Some explanations:

((1,1) (4,2)) = a 2d object (2d cell or face), implicitly created by combining the 1d object (edge) no. 4
from space 1 and the 1d object no. 2 from space 2. ((1,0) (2,4)) = a 1d object (edge), implicitly created
by combining 1d object (edge) from space 1 with the 0d object (node) no. 4 from space 2. ((0,0) (2,2))
= a 0d object (node), implicitly created by combining 0d objects (nodes) no. 2 from space 1 and no. 2
from space 2.

2.2.3.1.1.2 Object classes

This section shows the different object classes present in the grid. The implicit numbering of the objects
in a class is obtained by iterating over all subobjects defining the objects, lowest space first.

Object class (1,1): 2d cells/faces. They have the following implicit numbering:

2.2. General Grid Description and Grid Service Library 45

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Object class (1,0): 1d edges, aligned along the R axis (“r-aligned”). They have the following implicit
numbering:

Object class (0,1): 1d edges, aligned along the Z axis (“z-aligned”). They have the following implicit
numbering:

Object class (0,0): 0d nodes. They have the following implicit numbering:

46 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2.2.3.1.1.3 Example 2: B2 grid

2.2.3.1.2 Object list examples

Some examples for object lists, to explain the concept and show the notation. All examples refer to
the 2d structured R,Z example grid #1 given above. Object descriptor A single object (= and object
descriptor), for object with object class (1,1), object index (4,2).

((1,1) (4,2))

Explicit object lists An explicit object list is simply an enumeration of object descriptors. The ordering
of the objects is given directly by their position in the list. Note that by definition, all objects in the list
must be of the same class (An implementation of an explicit object list should enforce this. If you need
lists of objects with differing class, have a look at subgrids).

An explicit list of 2d cells (faces), listing the four corner cells of the grid in the order bottom-left,
bottom-right, top-left, top-right:

(((1,1) (1,1)),
((1,1) (5,1)),
((1,1) (1,4)),
((1,1) (5,4)))

Implicit object lists Implicit object lists use the implicit order of (sub)objects to form an efficient repre-
sentation of (possibly large) sets of objects. They thus avoid explicit enumeration of individual objects
as done in the explicit objects lists. The following examples demonstrate the implicit list notation. Note:
the implicit list notation is used in the Python implementation of the grid service library in exactly the
form given here.

Selecting all indices An implicit object list of all r-aligned edges:

((1,0) (0,0))

Object and subobject indices in the grid description start counting from 1, i.e. object no. 1 is the first
object. The index 0 is special and denotes an undefined index. In this notation, it denotes all possible
indices.

An implicit object list of the (z-aligned) boundary edges on the left boundary of the grid:

((0,1) (1,0))

The first entry of the index tuple denotes the first node in the r-space, the second entry denotes all edges
in the z space. The implicit list denotes a total of 4 1d edges. Their implicit numbering is again given by
iterating over all defining objects, lowest space first. The list therefore expands to

((0,1) (1,1))
((0,1) (1,2))
((0,1) (1,3))
((0,1) (1,4))

Selecting explicit lists of indices An implicit object list of the (z-aligned) right and left boundary edges:

((0,1) ([1,6],0))

The first entry of the index tuple denotes a list of nodes in the r-space, more specifically the first and the
last (=6th) node. The second entry denotes again all edges in the z space. The implicit list then denotes
a total of 8 1d edges in the following order:

2.2. General Grid Description and Grid Service Library 47

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

((0,1) (1,1))
((0,1) (6,1))
((0,1) (1,2))
((0,1) (6,2))
((0,1) (1,3))
((0,1) (6,3))
((0,1) (1,4))
((0,1) (6,4))

Selecting ranges of indices An implicit object list of all 2d cells, except the cells on the left and right
boundary.

((1,1) ((2,4),0))

The first entry of the index tuple denotes a range of edges in the r-space, more specifically the edges 2
to 4. The second entry of the index tuple denotes all four edges in the z-space. The implicit list then
denotes a total of 12 2d cells in the following order:

((1,1) (2,1))
((1,1) (3,1))
((1,1) (4,1))
((1,1) (2,2))
((1,1) (3,2))
((1,1) (4,2))
((1,1) (2,3))
((1,1) (3,3))
((1,1) (4,3))
((1,1) (2,4))
((1,1) (3,4))
((1,1) (4,4))

All implementations of the grid service library define the constant GRID_UNDEFINED=0 to spec-
ify an undefined index. Use of GRID_UNDEFINED instead of 0 is advised to increase the
readability of the code. The following notations are therefore equivalent ((1,0) (0,0)) = ((1,0)
(GRID_UNDEFINED,GRID_UNDEFINED)) ((0,1) (1,0)) = ((0,1) (1,GRID_UNDEFINED))

2.2.3.1.3 Subgrid examples

A subgrid is an ordered list of grid objects of a common dimension. The difference to object lists is that
they can contain objects of different object classes.

The subgrid concept is central to storing data on grids. To store data, first a subgrid has to be defined.
The objects in the grid have a fixed order, which then allows to unambiguously store the data associated
with the objects in vectors.

Technically, a subgrid is an ordered list of object lists, of which every individual list is either explicit or
implicit. The ordering of the objects in the subgrid is then directly given by the ordering of the object
lists and the ordering of the grid objects therein.

Subgrid example The following subgrid consists of all boundary edges of the 2d R,Z example grid #1,
given as four implicit object lists.

((1,0) (0,1)) ! bottom edges
((0,1) (6,0)) ! right edges
((1,0) (0,5)) ! top edges
((0,1) (1,0)) ! left edges

Explicitly listing the objects in the order given by the subgrid gives:

48 Chapter 2. Infrastructure

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

1: ((1,0) (1,1)) ! bottom edges
2: ((1,0) (2,1))
3: ((1,0) (3,1))
4: ((1,0) (4,1))
5: ((1,0) (5,1))
6: ((0,1) (6,1)) ! right edges
7: ((0,1) (6,2))
8: ((0,1) (6,3))
9: ((0,1) (6,4))
10: ((1,0) (1,5)) ! top edges
11: ((1,0) (2,5))
12: ((1,0) (3,5))
13: ((1,0) (4,5))
14: ((1,0) (5,5))
15: ((0,1) (1,1)) ! left edges
16: ((0,1) (1,2))
17: ((0,1) (1,3))
18: ((0,1) (1,4))

The number at the beginning of each line is the local index of the object, where local means locally in
the subgrid. Note that, again, counting starts at 1.

2.2.3.2 Grid service library

2.2.3.2.1 Using the grid service library

2.2.3.2.1.1 Setting up the environment

The grid service library requires the EU-IM data structure version 4.09a (or later). Before using it you
have to make sure your environment is set up properly. The following section assumes you are using csh
or tcsh on the Gateway.

First, your environment variables have to be set up properly. To check them do

echo $TOKAMAKNAME

It should return

test

Also do

echo $DATAVERSION

It should return

4.09a

(or some higher version number). If either of them returns something different, run

source $EU-IMSCRIPTDIR/EU-IMv1 kepler test 4.09a > /dev/null

and check the variables again.

Second, you have to ensure your data tree is set up properly. Do

ls ~/public/itmdb/itm_trees/$TOKAMAKNAME/$DATAVERSION/mdsplus/0/

If you get something like “No such file or directory”, you have to set up the tree first by running

2.2. General Grid Description and Grid Service Library 49

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

$EU-IMSCRIPTDIR/create_user_itm_dir $TOKAMAKNAME $DATAVERSION

and then do the previous check again.

2.2.3.2.1.2 Checking out and testing the grid service library

To be able to get the code of the grid service library, you have to be a member of the EU-IM General
Grid description (itmggd) project (you can apply for this here).

Once you are a member, you can check out the code by

svn co https://gforge6.eufus.eu/svn/itmggd itm-grid

Then you can run the unit tests for the grid service library by

cd itm-grid
source setup.csh

This will setup environment variables (especially OBJECTCODE) and aliases. Then do

testgrid setup

This will set up the build system for the individual languages. It will also build and execute a Fortran
program that writes a simple 2d example grid stored in an edge CPO into shot 1, run 1.

To actually run the tests do

testgrid all

This will go through the implementations in the different languages (F90, Python, ...) and run unit tests
for every on of them. If all goes well, it should end with the message

Test all implementations: OK

If this is not the case, something is broken and must be fixed.

2.2.3.2.2 Example applications (outdated)

Note: this is a bit outdated. Have a look here.

2.2.3.2.2.1 Plotting 3d wall geometry with VisIt (temporary solution, not required any
more)

This example plots a 3d wall representation stored in the edge CPO (in the future, this information will
be stored in the wall CPO). The example data used here is generated by a preprocessing tool which is
part of the ASCOT code.

1. Check out the grid service library (See above. You don’t necessarily have to run the tests)

2. Change to the python/ directory and setup the environment:

cd itm-grid/python/; source setup.csh

3. Edit the file itm/examples/write_xdmf.py to use the right shot number

50 Chapter 2. Infrastructure

https://gforge6.eufus.eu/gf/project/itmggd/

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

4. Run it (still in the python/ directory of the service library) with

python26 itm/examples/write_xdmf.py

This will create two files: wall.xmf and wall.h5

5. Start visit with

visit23

and open the wall.xmf file. Then select Plot->Mesh->Triangle and
click on the "Draw" button.

2.2.3.2.2.2 Using UALConnector to visualize CPOs using the general grid description

UALConnector allows you to bring data directly from the UAL into VisIt.

1. Check out the grid service library (See above. You don’t necessarily have to run the tests)

2. Run UALConnector. Examples:

./itm-grid/ualconnector -s 9001,1,1.0 -c edge -u klingshi -t test -v 4.09a

./itm-grid/ualconnector -s 15,1,1.0 -c edge -u klingshi -t test -v 4.09a

3. When finished, close VisIt and terminate the UALConnector by typing ‘quit’.

You don’t even have to check out the service library. UALConnector is made available at

~klingshi/bin/itm-grid/ualconnector

, i.e.

~klingshi/bin/itm-grid/ualconnector -s 9001,1,1.0 -c edge -u klingshi -t test -v 4.09a

~klingshi/bin/itm-grid/ualconnector -s 15,1,1.0 -c edge -u klingshi -t test -v 4.09a

2.2.3.3 IMP3 General Grid Description and Grid Service Library - Tutorial

2.2.3.3.1 Setup your environment

echo $DATAVERSION
echo $TOKAMAKNAME

should give “4.09a” and “test”. If not, run

source $EU-IMSCRIPTDIR/EU-IMv1 kepler test 4.09a > /dev/null

To copy the tutorial files:

cp -r ~klingshi/bin/itm-grid ~/public

Switch to the right version of the PGI compiler:

module unload openmpi/1.3.2/pgi-8.0 compilers/pgi/8.0
module load compilers/pgi/10.2 openmpi/1.4.3/pgi-10.2

2.2. General Grid Description and Grid Service Library 51

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

To set up the environment:

cd $HOME/public/itm-grid/f90
source setup.csh

2.2.3.3.2 Compile & run examples

2d structured grid write example Source file is at:

src/examples/itm_grid_example1_2dstructured_servicelibrary.f90

Compile:

make depend
make $OBJECTCODE/itm_grid_example1_2dstructured_servicelibrary.exe

Run:

$OBJECTCODE/itm_grid_example1_2dstructured_servicelibrary.exe

2d structured grid read example Source file is at:

src/examples/itm_grid_example1_2dstructured_read.f90

Compile:

make $OBJECTCODE/itm_grid_example1_2dstructured_read.exe

Run:

$OBJECTCODE/itm_grid_example1_2dstructured_read.exe

2.2.3.3.3 Visualize

To visualize the data written by the example program

~klingshi/bin/itm-grid/ualconnector -s 9001,1,0.0 -c edge

To visualize a more complex dataset

~klingshi/bin/itm-grid/ualconnector -s 17151,899,1000.0 -c edge -u klingshi -t aug

Combining data from two CPOs:

~klingshi/bin/itm-grid/ualconnector -s 17151,898,1000.0 -c edge -s 17151,899,1000.0 -c edge -
→˓u klingshi -t aug

52 Chapter 2. Infrastructure

CHAPTER

THREE

EUROPEAN TRANSPORT SIMULATOR (ETS)

3.1 ETS Documentation

This page contains useful information on the European Transport Simulator (ETS) including documen-
tation, description of the pre and post-processing tools used with ETS as well as instructions on how to
use ETS and tools on the EUROfusion Gateway.

3.1.1 Configuration of the ETS-5 workflow in Kepler

ETS-5 uses CPO for actor integration in Kepler and as input data to the workflow. This means that the
user environment needs to be set up as ITM environment.

To do so login on the EUROfusion Gateway and type the following commands:

module purge
module load cineca
module load itmenv/ETS_4.10b.10_v5.7.0
source $ITMSCRIPTDIR/ITMv2.sh jet
export ITM_KEPLER_DIR=$ITMWORK/my_keplers
export _JAVA_OPTIONS="-Xss20m -Xms4g -Xmx8g -Dsun.java2d.xrender=false"

The command ‘module load itmenv/ETS...’ loads the itmenv environment and in particular in the case
above the ETS / Kepler version 5.7.0 To load a different version just change the number e.g. v5.5.0

The $ITMSCRIPTDIR/ITMv2.sh JET command will set up your local database folder to ‘JET’. This
means that any simulation done with ETS will be saved in the JET folder (even if you are simulating
TCV!!). If you would like to simulate any other Tokamak, type again the command and change JET
with e.g. AUG.

The remaining commands are JAVA options for running Kepler and setting of MPI useful for running
parallel actors.

If it is the first time you run ETS then you will need to install your first ‘dressed’ Kepler version which
corresponds to Kepler with all the WPCD actors embedded in it.

This can be done by executing the following command

install_kepler.sh ets_v570 trunk/ETS_4.10b.10_v5.7.0/central "dressed central kepler v5.7.0"
switch_to_kepler.sh ets_v570

For loading the Workflow+tools (import data, postprocessing):

svn co https://gforge6.eufus.eu/svn/keplerworkflows/tags/ETS_4.10b.10_v5.7.0

53

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

The above command requires enabled access to GFORGE (if you are a ‘simple’ user you might
need to apply for access to GFORGE). Typing the command above will check out and store the
ETS_worflow.xml and useful python scripts in the directory from where it is issued.

Plotting routines such as kplots can be found under

>cd $KEPLER

You are now ready to start ETS!!

The latest version of ETS-5 is v5.5.0 (09/12/2019)

To launch Kepler and load the ETS-5 workflow just type

>kepler.sh

or if you like to see the the log messages printed on the scree while ETS runs

>kepler.sh -nolog

Once the Kepler canvas opens, chose the option ‘load workflow’ from the File menu and select the
workflow you would like to load. The recommendation is to use the ETS workflow released with the
version release procedure and then upload your parameter settings via the parameter file. See the option
- running ETS with autoGui

A video showing how to run and set up ETS-5 can be viewed here

https://www.youtube.com/watch?v=dv427_XOFf4&t=87s

3.1.2 ETS releases

ETS release 5.5.0 is installed on the Gateway.

Quick installation instructions (to update your environment) are available here (password protected ar-
eas):

https://portal.eufus.eu/twiki/bin/view/Main/Installation_of_latest_kepler_release

Detailed instructions are available here:

https://portal.eufus.eu/twiki/bin/view/Main/User_Guide_accessing_JET_data

List of modifications (as compared to the previous release) is available here:

https://portal.eufus.eu/twiki/bin/view/Main/Updates_550

3.2 ETS workflows in KEPLER

The ETS workflow is used for 1-D transport simulation of a tokamak core plasma.

ETS workflows in KEPLER:

• use actors and composite actors from the WPCD / IMAS fusion library

• complex, but clearly structured workflow, which offers user friendly interface for configuring the
simulation

54 Chapter 3. European Transport Simulator (ETS)

https://www.youtube.com/watch?v=dv427_XOFf4&t=87s
https://portal.eufus.eu/twiki/bin/view/Main/Installation_of_latest_kepler_release
https://portal.eufus.eu/twiki/bin/view/Main/User_Guide_accessing_JET_data
https://portal.eufus.eu/twiki/bin/view/Main/Updates_550

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• allow for easy modifications (connecting new modules, or reconnecting parts of the workflow)
through an easy graphical interface

• provide users with all updates through the version control system

• still in active development tool (ETS-6)

Starting the workflow: If you have the workflow already installed, there are several ways to execute it:

• For execution via kepler GUI:

>kepler.sh workflow_path/workflow_name.xml

• for executution via autoGui

>autoGui

once the GUI opens select load workflow after which a parameter file can be loaded. You can create a
parameter file by loading the standard workflow released with the Kepler version and then chosing the
option from the top menu ‘save parameter file’. The use of autoGui is strongly recommanded as work-
lows are large xml files while parameter files are small and do not take all your disk space. Moreover
parameter files can be loaded in any version of ETS-5 by opening the standard workflow included in the
release.

3.2.1 Configuring the ETS run

3.2.1.1 Workflow parameters

3.2.1.1.1 General Parameters

• USER - your userid

• MACHINE - machine name (database name) for which comutations are done

• SHOT_IN - input shot number

3.2. ETS workflows in KEPLER 55

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• RUN_IN - input run number

• RUN_OUT - output run number

• RUNWORK - work directory number (typically 800)

3.2.1.1.2 Time resolution

Start and End time:

• TBEGIN - Computations start time

• TEND - Computations end time

3.2.1.1.3 Transport

• NRHO - number of radial points for transport equations

3.2.1.1.4 Equilibrium

• NPSI - number of points for equilibrium 1-D arrays

• NEQ_DIM1 - number of points for equilibrium 2-D arrays, first index

• NEQ_DIM2 - number of points for equilibrium 2-D arrays, second index

• NEQ_MAX_NPOINTS - maximum number of points for equilibrium boundary

3.2.1.1.5 Numerics

• NUMERICAL_SOLVER - choice of the numerics solving transport equations (RECOMENDED
SELECTION: 3 or 4)

• EXPLICIT HYPER DIFFUSIVITY - Constant diffusivity used in the stabilization scheme needed
to deal with stiff transport models

• IMPLICIT HYPER DIFFUSIVITY - Same as above used in the implicit part of the solver

• MINIMUM TIME STEP - Minimum time step allowed in the transport solver

• MAXIMUM TIME STEP - Maximum time step allowed in the transport solver

3.2.1.1.6 Equilibrium

• NPSI - number of points for equilibrium 1-D arrays

• NEQ_DIM1 - number of points for equilibrium 2-D arrays, first index

• NEQ_DIM2 - number of points for equilibrium 2-D arrays, second index

• NEQ_MAX_NPOINTS - maximum number of points for equilibrium boundary

Time step:

• right click on the box BEFORE THE TIME EVOLUTION

56 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• select Configure actor

• TAU :specify value of the time step in [s]

• TAU_OUT : specify value of the output time interval in [s]

• Commit

3.2.1.2 Ion, Impurity and Neutral Composition

Before starting the run you need to define types of main ions, impurity (optional) and neutrals (optional)
to be included in simulations.

To define plasma composition:

• right click on the box BEFORE THE TIME EVOLUTION

• select Configure actor

• choose one of modes for setting Run_compositions

– from_input_CPO - will pick up the COMPOSITIONS structure of the COREPROF CPO
saved to the input shot;

– configure_manually - will force the composition from the values specified below

• specify values of atomic mass (AMN_ion), nuclear charge (ZN_ion) and charge (Z_ion , from
the first ion to the last [1:NION] , separated by commas

• (optional) specify values of atomic mass (AMN_imp), nuclear charge (ZN_imp) and maximal
ionization state (max_Z_imp) for impurity ions, from the first to the last [1:NIMP] , separated by
commas

• (optional)for neutrals activate, by switchen them to ON, the types which shall be followed by
neutral solver

• press Commit

3.2. ETS workflows in KEPLER 57

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.1.3 Equations to be solved and boundary conditions

3.2.1.3.1 Main Plasma

Before starting the run you need to select the type and value of the boundary conditions for all equations.
Please note that the value should correspond to the type. All equations allow for following types of
boundary conditions:

• OFF - equation is not solved, initial profiles will be kept for whole run

• value - edge value should be specified

• gradient - edge gradient should be specified

• scale_length - edge scale length should be specified

• generic - generic form: a1*y´ + a2*y = a3 of the boundary condition is assumed, 3 coefficients
(a1, a2, a3) should be provided

• value_from_input_CPO - equation is solved, edge value evolution will be red from input shot

• profile_from_input_CPO - equation is not solved, profile evolution will be red from input shot

The particular equation will be activated if the boundary condition type for it is other than OFF

To set up boundary conditions:

• right click on the box BEFORE THE TIME EVOLUTION

• select Configure actor

• select appropriate boundary condition for each equation

• specify values for boundary conditions corresponding to the type and to the ion component

• Commit

The workflow will not allow the user all particle components (ions[1:NION]+electrons) to be run predic-
tively. At least one of them shall be set to OFF (this component will be computed from quasi-neutrality
condition).

!!! If electron density is solved, all ions with ni_bnd_type=OFF will be computed from the quasineutral-
ity condition and scaled proportional to specified ni_bnd_value or inversely proportional to their charge,
charge_proportional. This is defined by option: ni_from_quasineutrality.

58 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.1.3.2 Impurity

You can set up the boundary conditions for impurity ions in a similar way as for main ions. !!! Note,
that at the moment only types: OFF; value and value_from_input_CPO are accepter by impurity solver.

To set up boundary conditions:

• right click on the box BEFORE THE TIME EVOLUTION

• select Configure actor

• select appropriate boundary condition for each impurity species (OFF-equation is not solved)

• specify values for boundary density of each impurity component [1:MAX_Z_IMP], separated by
commas

• Commit

Interface for impurity boundary condition has additional option, coronal_distribution, that allow to pre-
set the edge values or entire profiles of individual ionization states from coronal distribution. In tis case
only single value is required to be specified for each impurity boundary value. The options are:

• OFF - the boundary values for impurity densities will be as they are specified above;

• boundary_conditions - the boundary densities will be renormalized with corona, using the first
element from above as a total density

3.2. ETS workflows in KEPLER 59

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• boundary_conditions_and_profiles - the boundary densities and starting profiles will be renormal-
ized with corona, using the first element from above as a total density

3.2.1.3.3 Neutrals

Note, that ALL values should be specified in the order: {1, 2, 3 ...NION, 1, 2, 3, ...NIMP}

To set up boundary conditions:

• right click on the box BEFORE THE TIME EVOLUTION

• select Configure actor

• select appropriate boundary condition for each neutral species (OFF-equation is not solved)

• specify values for boundary density and temperature of each neutral component [1, 2, 3 ...NION,
1, 2, 3, ...NIMP], separated by commas

• Commit

3.2.1.3.4 Input profiles interpolation

You are going to start the ETS run from some input shot, which might contain some conflicting rho grids
saved to different CPOs. Thus there is a choice for the user to decide on the grid on which the starting
profiles should be load by the worflow,

Interpolation_of_input_profiles.

To define the interpolation grid select:

• on_RHO_TOR_grid - interpolate input profiles based on the grid specyfied in [m];

• on_RHO_TOR_NORM_grid - interpolate input profiles based on normalised rho grid [0:1]

3.2.1.4 Convergence loop

ETS updates input from different physics actors in a sequence, which is finished by solving the trans-
port equations. Ther are possible none-linear couplings between different parts of the system. These
nonelinearities are treated by the ETS using iterations. The decision to step in time is made by the ETS
based on the criteria that the maximum relative deviation of main plasma profiles is lower than some

60 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

predefined tolerance. There is a number of settings and switches in the ETS that are used by the iterative
scheme. To edit them do:

• right click on the box CONVERGENCE LOOP

• select Configure actor to edit settings

• choose your settings

• Commit

Switches in the field FREQUENCY OF CALLING THE PHYSICS ACTORS define how many times the
actors of a certain cathegory (equilibrium, transport, etc.) should be called.

Switches and parameters in the field CONTROL PARAMETERS define how iterations are done

• Tolerance - defines the maximum relative error of profiles change compared to previous iteration.
If it is achieved the time steping is done.

For highly none-linear case the required precision can be achieved faster by the iterative scheme if only
fraction of the new solution is mixed to the previous state. The following scheme is adopted by the ets
to reduce none-linearities in profiles, transport coefficients and sources:

Y = (Amix * Y+) + ((1-Amix)*Y-)

where Amix is the mixing fraction You can activate the mixing of profiles, transport coefficient and
sources by selecting the corresponding Mixing_fraction_... to be between [0:1] You also can activate the
authomatic ajustment of this fraction by selecting: Ajust_Mixing_for_... to YES

3.2. ETS workflows in KEPLER 61

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.1.5 Equilibrium

3.2.1.5.1 Initialization Settings

Before starting the run you need to set up your initial equlibrium. There are several options to do it: if
your input shot contains the consistent equilibrium with all necessary parameters - you can start imme-
diately from it; if your input shot contains the equilibrium but it is not consistent or some parameters
are missing you can check it automatically; if your input equilibrium is corrupt or not present - you can
define the starting equlinbrium by tree moment description. To select your starting equilibrium please
do:

• right click on the box BEFORE THE TIME EVOLUTION

• select Configure actor to edit settings

• Select your settings or specify values

• Commit

SETTINGS:

• Equilibrium_configuration - select configure_manually if you like to specify configuration below;
select from_input_CPO if all quantities should be picked up from the input CPO

• R0_Machine_characteristic_radius - Characteristic radius of the machine, here B0 is measured
[m]

• B0_Magnetic_field_at_R0 - Magnetic field measured at the position R0 [T]

• RGEO_Major_Radius_of_LCMS_centre - R coordinate of the geometrical centre of the LCMS
[m]

• ZGEO_Altitude_of_LCMS_centre - Z coordinate of the geometrical centre of the LCMS [m]

• Total_plasma_current_IP - plasma current within the LCMS [A]

• Minor_radius - minor radius of the LCMS [m]

• Elongation - elongation of the LCMS [-]

• Triangularity_upper - upper triangularity of the LCMS [-]

• Triangularity_lower - lower triangularity of the LCMS [-]

62 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• Equilibrium code - select one of available equilibrium solvers to check the consistency between
starting equilibrium and current profile; use INTERPRETATIVE if you trust your input data (in
this case the check will be ignorred).

Please note, that different equilibrium solvers might require slightly different input. Thus it is a user
responsibility to check that the information inside input shot/run is enough to run selected equilibrium
solver.

3.2.1.5.2 Run Settings

There are several equilibrium solvers connected to the ETS. You can select the one of them.Therefore
please do:

• right click on the box CONVERGENCE LOOP

• select Open actor

• right click on the box EQUILIBRIUM

• select Configure actor to edit settings

• choose your equilibrium solver

• Commit

INTERPRETATIVE means that the ETS will not update the equilibrium, instead it will be using the
initial equilibrium.

Please note, that it is better to select the same code as you used for pre-iterrations. Because outputs
of different equilibrium solver are not necessary done with the same resolution. Therefore the routine
saving the information to the data base might brake due to uncompatible sizes of some signals.

3.2. ETS workflows in KEPLER 63

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.1.6 Transport

The settings for TRANSPORT can be done inside the CONVERGENCE LOOP composite actor. There-
fore please do:

• right click on the box CONVERGENCE LOOP

• select Open actor

• right click on the box TRANSPORT

• select Configure actor to edit settings

• choose your settings

• press Commit

3.2.1.6.1 Transport models

ETS constructs the total transport coefficients from the combination of Anomalous transport (model
choice), Neoclassical transport (model choice), Database transport (transport coefficients be saved to the
input shot) and Background transport (Transport coefficients defined through the GUI interface)

D_tot = D_DB*M_DB + D_AN*M_AN + D_NC*M_NC + D_BG*M_BG

You should choose from the list of evailable models in each cathegory or switch it OFF

Individual multipliers for all channels shall be specified on the lower level through the code parameters
of Transport Combiner

64 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.1.6.2 Background transport

You can add the constant background level for each coefficient (ion and impurity coefficients are ex-
pected to be the strings of [1:NION] and [1:NIMP] elements respectively, separated by commas)

3.2.1.6.3 Edge transport barrier

In this section you can artificially supress the transport outside of specified RHO_TOR_NORM_ETB.
Total transport coefficients for all transport channels (ne, ni, nz, Te, Ti,...) will be reduced to con-
stant values specified below (ion and impurity coefficients are expected to be the strings [1:NION] and
[1:NIMP] respectively)

3.2.1.6.4 Total transport coefficients

The fine tuning of of transport coefficients can be done through editing the XML code parameters of the
transport combiner actor:

• In Outline browse for transportcombiner

3.2. ETS workflows in KEPLER 65

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• select Configure actor

• click Edit Code Parameters

• – If you select OFF contributions from all transport models to this channel will be nullified;

– If you select Multipliers_for_contributions_from the transport channel will be activated,
and the total transport coefficient will be combined from active tranport models. You gust
need to specify multiplier against each channel;

– For convective velocity there is an additional option
V_over_D_ratio_for_contributions_from. With this option selected the combiner
will ignore the convective components provided by transport models. The convective
velocity will be determined from the diffusion coefficient by applying fixed V/D ratio (for
inward pinch the values should be negative!).

• Save and exit

• Commit

3.2.1.7 MHD

The settings for MHD type of events can be done inside the CONVERGENCE LOOP composite actor.
Therefore please do:

• right click on the box CONVERGENCE LOOP

• select Open actor

• right click on the box MHD

• select Configure actor to edit settings

• choose your settings

• Commit

66 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

At the moment ETS allows only for NTM to be activated.

User can ajust the following NTM settings:

• NTM – ON means that ETS will add the NTM driven transport to the total transport coefficient;
OFF -ignored

• NTMTransportMultiplier – the transport contrinution from NTM will be multiplied with this value

• Onset_NTM_time - activation time for the NTM mode

• Onset_NTM_width - starting width of the mode

• m_NTM_poloidal_number

• n_NTM_toroidal_number

• NTM_phase

• NTM_frequency

3.2.1.8 Sources and impurity

The settings for SOURCES AND IMPURITY can be done inside the CONVERGENCE LOOP com-
posite actor. Therefore please do:

• right click on the box CONVERGENCE LOOP

• select Open actor

• right click on the box SOURCES AND IMPURITY

• select Configure actor to edit settings

• choose your settings

• Commit

3.2. ETS workflows in KEPLER 67

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.1.8.1 Analytical & Impurity sources

There is a number of sources developed by WPCD, which are actors or internal routines of the transport
solver. You can activate them by selecting ON / OFF in front of corresponding source:

• Database Sources – ON - ETS will pick up the evolution of source profiles saved to your input
shot/run; OFF -ignored

• Ohmic Heating – ON - ETS will compute Ohmic heating internaly; OFF -ignored

• Gaussian Sources – ON - ETS will add sources from the Gaussian source actor (you can configure
heat and particle deposition profiles by editing the code parameters of the actor); OFF -ignored

• Neutral Sources – ON - Fluid neutrals will be solved according to the boundary conditions speci-
fied on ¨Before_time_evolution¨ composite actor interface; OFF -ignored

• Switch_IMPURITY – ON - Impurity density and radiative sources will be computed; OFF -
ignored; INTERPRETATIVE – profiles of impurity density will be read from input shot/run

3.2.1.8.2 HCD sources

There is a number of sources developed by WPCD, that are incorporated by the ETS workflow.

For the HCD sources please activate the type of heating source, by ticking the box in front of it, and
select the code to simulate it.

68 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

You also need to configure initial HCD settings. Therefore please:

• right click on the box BEFORE THE TIME EVOLUTION

• select Open Actor

• right click on the box SETTINGS FOR HEATING AND CURRENT DRIVE

• select Configure actor

• edit the stettings

• Commit

Please note that settings for NBI are done independent for each PINI. Therefore, for NBI settings,
please insert the values separated by commas. The number of the element in the array corresponds to
the number of activated PINI. Maximum accepted number of PINIs = 16.

3.2.1.8.3 Power control

You also can activate the power control for the IMP5HCD sources.

If the POWER_CONTROL is not OFF, there are two modes of operation: specific and frequency

For specific you should specify the time sequence separated by commas and the corresponding power
sequence (where first power level corresponds to the first time, second to second and etc.). Linear
interpolation will be done between the sequence points. For example: if you give the power sequence =
2e6,4e6,1e6 and times = 0.0, 0.7, 1.5 (s) the delivered power would be:

For frequency you should specify the power levels sequence separated by commas, start and end time
of the power control and the frequency of switching between these levels. For example: if you give the
power sequence = 2e6,4e6,1e6 and frequency = 10 (Hz) tstart = 0.0 (s) tend = 1.5 (s) the delivered
power would be:

3.2. ETS workflows in KEPLER 69

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

70 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.1.8.4 Total power

Profiles of the total source for each channel are obtained from the the individual contributions (Data
Base, Gaussian, Neutrals, Impurity and HCD) as a summ of all activated sources multiplied with coeffi-
cients specified on the interface of the composite actor.

S_tot = S_DS*DSM + S_GS*GSM + S_Neu*NeuSM + S_IMP*IMPSM + S_HCD*HCDSM

The fine tuning of of sources can be done through editing the XML code parameters of the source
combiner actor:

• In the Outline browse for source combiner

• select Configure actor

• click Edit Code Parameters

• If you like the sources to the particular equation being activated - select from_input_CPOs,
and then, put the multipliers against each contribution; if you select OFF contributions from
all sources to this channel will be nullified.

• save and exit

• Commit

3.2.1.9 Instantaneous events & Actuators

At the moment, user can swith ON and OFF two types of events: PELLET and SAWTOOTH

3.2.1.9.1 Pellet

At the top level of the workflow you can configure times for pellet injection

3.2. ETS workflows in KEPLER 71

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• right click on the box INSTANTANEOUS EVENTS & ACTUATORS

• select Configure actor to edit settings

• Select Pellet_injection equal ON if you like to use pellet in your simulation

• Select mode of operation:

– Times_for_pellets equals specific – pellets will be shut at exact times specified in array
times_pellet

– Times_for_pellets equals frequency – pellets will be shut from tstart_pellet until tend_pellet
with a frequency_pellet

• Commit

Parameters of individual pellet need to be configured through the code_parameters of the PELLET actor.
To access it go to Outline on the right upper corner and open the following:

• right click on the actor PELLET

72 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• select Configure actor

• click Edit Code Parameters

• edit parameters and click save and exit

• Commit

amn – atomic mass number: array of elements separated by space (1:nelements) [-]

zn – nuclear charge: array of elements separated by space (1:nelements) [-]

fraction – fraction of each element in the pellet, based on the number of atoms: array of elements
separated by space (1:nelements) [-]

rpell – radius of the pellet [m]

vpell – velocity of the pellet [m/s]

rcloud – radius of the pellet cloud [m], radial extension of the cloud = 2*rp0

lcloud – length of the pellet cloud along the field line [m]

3.2. ETS workflows in KEPLER 73

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Tcloud – temperature of the pellet cloud [eV]

Pellet path is specified by two points, for which R and Z coordinated should be specified

R – R coordinates of the pivot and second points of the pellet path, separated by space [m]

Z – Z coordinates of the pivot and second points of the pellet path, separated by space [m]

Control switches allow to activate:

• drifts - YES - will activate radial displacement of deposition profile, same for all path points

• cooling - YES - will activate cooling of the other side of the plasma due to parallel heat transport
(essential for large pellets, which might cross the same flux surface twice)

• JINTRAC - YES - will provide temperature reduction consistent with the model used in JETTO

3.2.1.9.2 Sawtooth

At the top level of the workflow you can switch ON/OFF possible MHD events

• right click on the box INSTANTANEOUS EVENTS & ACTUATORS

• select Configure actor to edit settings

• Select SAWTOOTH ON if you like to use them in your simulation

• Commit

3.2.1.9.3 Actuators

At the top level of the workflow you can switch ON/OFF actuator for Runaway Indicator (Runin) - this
is ON by default. It only gives warning messages, and has no effect on the simulation results.

• right click on the box INSTANTANEOUS EVENTS & ACTUATORS

• select Configure actor to edit settings

• Select actuator_runaways OFF if you’d like not to use Runaway Indicator in your simulation

• Commit

3.2.1.10 Scenario output

You can summarize the ETS run by activating the output to SCENARIO CPO (as post-processing of the
run).

To activate the SCENARIO output:

• right click on the box AFTER THE TIME EVOLUTION

• select Configure actor

• select Generate_SCENARIO_output_from_ETS_run equal YES

• Commit

74 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.1.11 Visualization during the run

There is a number tools visualizing the ETS run.

3.2.1.11.1 Multiple Tab Display

The display appeares automaticaly when the ETS workflow is launched. It displays diagnostic text
messages from the workflow on following topics:

• Input data statement

• Iterations to check the initial convergence between EQUILIBRIUM and CURRENT

• Time evolution

• Convergence of iteratinos within the time step

• HCD settings

• Power used by HCD actors durung the run

Also the error messages from execution of the workflow will be displayed here.

3.2.1.11.2 ETSviz

ETSviz is a python visualization tool with a graphical interphase that shows during the run the calculated
kinetic profiles evolution, particle energy sources and sinks, equilibrium evolution and other useful
infoirmnation. ETSviz appears automatically during the ETS run. If you would like to launch ETSviz
you can find the script in $KEPLER/kplots

3.2. ETS workflows in KEPLER 75

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

76 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.2 List of Actors

3.2.2.1 Equilibrium actors

Code name Code Category Contact persons Short description
chease

Grad-Shafranov
solver

Olivier Sauter

Chease is a fixed
boundary
Grad-Shafranov
solver based on cubic
hermitian finite
elements see
H. Lütjens, A.
Bondeson, O. Sauter,
Computer Physics
Communications 97
(1996) 219-260

emeq

G-S solver

Rui Coelho fix-b equilibrium

spider

G-S solver
5. Fable

ASTRA fix-B equilib-
rium

helena

G-S solver
7. Huijsmans

fix-B equilibrium

spider_imp12

G-S dolver
18. Coelho

ASTRA fix-b equilib-
rium

3.2. ETS workflows in KEPLER 77

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

78 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.2.2 Core transport actors

Code name Code Category Contact persons Short description
BohmGB

Bohm/gyro-Bohm
transport
coefficients

1. Taroni
Analytical model

CDBM

CDBM
transport
coefficients

13. Honda
Analytical model

Weiland

Transport
coefficient from
fluid turbulence

Pär Strand Fluid model

GLF23

Transport
coefficient from
drift wave
turbulence

7. Stabler (GA)
Gyrokinetic model

RITM

Transport
coefficient from
drift wave
turbulence

Pär Strand Gyrokinetic model

MMM

Transport
coefficient from
drift wave
turbulence

PPPL Gyrokinetic model

EDWM/EDWMZ

Transport
coefficient from
drift wave
turbulence

Pär Strand multi-ion model

nclass

Neoclassical
transport
coefficients

Pär Strand Neoclassical model

neos

Neoclassical
transport
coefficients

Olivier Sauter Neoclassical model

neowesz

Neoclassical
transport
coefficients

Bruce Scott

Neoclassical transport
coefficients based on
the expression in John
Wesson’s book
Tokamaks.

neoartz

Neoclassical
transport
coefficients

Bruce Scott

spitzer

Resistivity

Spitzer Resistivity model

TGLF

Transport
coefficient from
drift wave
turbulence

7. Stabler
Gyrokinetic model

NEO

Transport
coefficient from
drift kinetic
equations

5. Belli
Gyrokinetic model

QualiKiz

Transport
coefficient from
drift wave
turbulence

10. Citrin
Gyrokinetic model

3.2. ETS workflows in KEPLER 79

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

80 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.2.3 Heating and current drive actors

Code name Code Category Contact persons Short description
gray EC/waves Lorenzo Figini

GRAY is a
quasi-optical
ray-tracing code
for electron cyclotron
heating & current
drive calculations in
tokamaks.
Code-parameter
documentation can be
found

travis EC/waves

Nikolai
Marushchenko
and
Lorenzo
Figini

Travis is a ray-tracing
code for electron
cyclotron heating &
current drive
calculations in
tokamaks.

Torray-FOM EC/waves Egbert Westerhof

Torray-FOM is a
ray-tracing code for
electron cyclotron
heating & current
drive calculations in
tokamaks.

bbnbi NBI/source Seppo Sipila

Calculate the
deposition rates of
neutrals
beam particles, i.e. the
input source for
Fokker-Planck solvers
(not the heating and
current drive). Note
that the number of
markers generated by
BBNBI is described
by
the kepler variable
num-
ber_nbi_markers_in.

nemo NBI/source

Mireille
Schneider

Calculate the
deposition rates of
neutrals
beam particles, i.e. the
input source for
Fokker-Planck solvers
(not the heating and
current drive).
Code-parameter
documentation can be
found

nuclearsim nuclear/source Thomas Johnson

Simple code for
nuclear sources from
thermal/thermal
reactions.
Code-parameter
documentation can be
found

afsi nuclear/source Thomas Johnson

Complete code for
nuclear sources from
all reactions.
Code-parameter
documentation can be
found

nbisim

NBI, alphas/
Fokker-Planck

Thomas Johnson

Simple Fokker-Planck
code calculating the
collisional ion and
electron heating from
a particle source,
either NBI or nuclear.
Code-parameter
documentation can be
found

risk

NBI Fokker-
Planck

Mireille
Schneider

Bounce averaged
steady-state
Fokker-Planck
solver calculating the
collisional ion and
electron heating from
a particle source
and the NBI current
drive. Code-parameter
documentation can be
found

spot

NBI, alphas
and
ICRF Fokker
-Planck

Mireille
Schneider

Monte Carlo solver for
the Fokker-Planck
equation. Traces
guiding centre orbits
in
a steady state magnetic
equilibrium under
the influence of
Coloumb collisions
and
interactions with ICRF
waves (through the
RFOF library). The
code can also be used
for NBI and alpha
particle modelling as it
can handle source
terms from the
distsource CPO.

ascot4serial

NBI, alphas,
ICRF/
Fokker-Planck

Otto
Asunta/
Seppo
Sipila

Monte Carlo
Fokker-Planck solver
calculating the
collisional ion and
electron heating from
a particle source
and the NBI current
drive.

ascot4parallel

NBI, alphas,
ICRF/
Fokker-Planck

Otto
Asunta/
Seppo
Sipila

Monte Carlo
Fokker-Planck solver
calculating the
collisional ion and
electron heating from
a particle source
and the NBI current
drive.

Lion IC / waves

Olivier Sauter
and
Laurent
Villard

Global ICRF wave
solver.
Code-parameter
documentation can be
found

Cyrano IC / waves

Ernesto Lerche
and
Dirk
Van Eester

Global ICRF wave
solver.
Code-parameter
documentation can be
found

Eve

IC / waves Remi Dumont

Global ICRF wave
solver

StixReDist IC / waves

Dirk
Van Eester
and
Ernesto
Lerche

1d Fokker-Planck
solver for ICRF
heating.

ICdep IC / waves Thomas Johnson

Generates Waves-cpo
with an IC wave field
with Gaussian
deposition profiles
described by a
combination of
antenna-cpo
input and through
code parameters input.
Code-parameter
documentation can be
found

ICcoup IC / coupling Thomas Johnson

Simple model for the
coupling waves from
ion cyclotron antennas
to the plasma.
Code-parameter
documentation can be
found

3.2. ETS workflows in KEPLER 81

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.2.4 Events actors

Code name Code Category Contact persons Short description
pelletactor pellet Denis Kalupin
pellettrigger pellet Denis Kalupin
sawcrash_slice sawteeth Olivier Sauter
sawcrit sawteeth Olivier Sauter
runaway_indicator runaway Roland Lohneroch

Gergo Pokol
Indicating the
presence of runaway
electrons:
1) Indicate, whether
electric field is
below the critical
level, thus runaway
generation is
impossible.
2) Indicate, whether
runaway electron
growth rate exceeds a
preset limit. This
calculation takes only
the Dreicer runaway
generation method in
account and assumes a
velocity distribution
close to Maxwellian,
therefore this result
should be considered
with caution. The
growth rate limit can
be
set via an input of the
actor. Limit value
is set to \(10^{12} \)
particle per second by
default.
(This growth rate
generates a runaway
current of
approximately 1kA
considering a
10 seconds long
discharge.)

82 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.2.2.5 Non-physics actors

The ETS uses the following list of non-physics actors: addECant, addICant, backgroundtransport, cal-
culateRHO, changeocc, changepsi, changeradii, checkconvergence, controlAMIX, coredelta2coreprof,
correctcurrent, deltacombiner, emptydistribution, emptydistsource, emptywaves, eqinput, etsstart, fill-
coreimpur, fillcoreneutrals, fillcoreprof, fillcoresource, fillcoretransp, fillequilibrium, fillneoclassic, fill-
toroidfield, gausiansources, geomfromcpo, hcd2coresource, ignoredelta, ignoreimpurity, ignoreneoclas-
sic, ignoreneutrals, ignorepellet, ignoresources, ignoretransport, IMP4dv, IMP4imp, importimptrans-
port, itmimpurity, itmneutrals, merger4distribution, merger4distsource, merger4waves, nbifiller, neo-
classic2coresource, neoclassic2coretransp, parabolicprof, plasmacomposition, PowerFromArray, Pow-
erModulation, profilesdatabase, readjustprof, sawupdate_slice, scaleprof, sourcecombiner, source-
database, transportcombiner, transportdatabase, wallFiller and waves2sources.

3.3 Turbulent Flux Quantities in Transport Models

3.3.1 Overview

In conventional transport modelling, all quantities appearing in the equations are 1-D, in some radial
coordinate (poloidal flux, normalised radius, etc). In general any monotonic radial coordinate is accept-
able. In the TF-EU-IM, the toroidal flux radius is standard. All we need from the radial coordinate is
the transformation to get to 𝑉, the volume enclosed by the flux surface, which is fundamental to the
governing equations, which are conservation laws.

What we have to do is to take a measured result, which is a time-averaged fluctuation-based transport
flux and turn it into 1-D quantities suitable to modelling. This is done using the flux surface average,
explained in conventions. The transport equations themselves constitute a mean field approximation to
the 3-D conservation laws. For the fundamentals encountered in transport modelling see R Hazeltine and
J Meiss, Plasma Confinement (Addison-Wesley, 1992) chapter 8. For the special properties of transport
driven by small-scale pressure driven ExB microturbulence see B Scott, “The character of transport
caused by ExB drift turbulence,” Phys Plasmas 10 (2003) 963-976.

For ambipolarity we follow the rules for dynamical alignment, which follows the physics of how elec-
tron fluctuations determine the ExB velocity fluctuations, which then advect all species. Magnetic flutter
nonlinearities act independently of this, but in our modelling they are used solely for heat fluxes since
the averaged particle transport due to magnetic flutter and the current cancels, leaving the parallel ion ve-
locity which we neglect for this purpose. The reference for dynamical alignment is B Scott, “Dynamical
alignment in three species tokamak edge turbulence,” Phys Plasmas 12 (2005) 082305.

Note: there are now auxiliary actors provided for this purpose: IMP4DV, which does the D/V conversion
and enforces ambipolarity assuming absence of impurities, and IMP4imp, which subsequently enforces
ambipolarity for the set of main ion and impurity species. The IMP4DV actor should be invoked directly
after the transport model actor in the workflow chain, if the model produces only fluxes or if the coeffi-
cients have to be modified with the flux given. Ambipolarity is done using IMP4imp if the coreimpurity
CPO is used in the workflow.

3.3.2 Particle Flux as an Example

The mean field equation governing particle balance is the transport equation for electrons,

𝜕

𝜕𝑡
⟨𝑛⟩ + ⟨∇⃗ · ̃︀𝑛̃⃗︀𝑣𝐸⟩ = 𝑆

3.3. Turbulent Flux Quantities in Transport Models 83

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

in which the tilde symbol over the n and v denotes fluctuating quantities and we neglect all transport
processes except ExB eddy diffusion. The ExB velocity is given by

�⃗�𝐸 =
𝑐

𝐵2
�⃗� × ∇⃗𝜑

where 𝜑 is the electrostatic potential.

The angle brackets denote the flux surface average, and we will use the property that the flux surface
average of a divergence of a vector is the volume derivative of the flux surface average of a contravariant
volume component of the vector, in this case

⟨∇⃗ · Γ⃗⟩ =
𝜕

𝜕𝑉
⟨Γ𝑉 ⟩

where Γ is the particle flux whose flux-surface averaged volume component is

⟨Γ𝑉 ⟩ = ⟨̃︀𝑛̃︀𝑣𝑉𝐸 ⟩
This is converted to expression in terms of the radial coordinate (rho‘ using the fact that both 𝑉 and 𝜌
are flux quantities whose gradients are parallel to each other. We have

𝜕

𝜕𝑉
=

1

𝑉 ′
𝜌

𝜕

𝜕𝜌
Γ𝜌 =

1

𝑉 ′
𝜌

Γ𝑉 𝑉 ′
𝜌 =

𝜕𝑉

𝜕𝜌
𝑔𝑉 𝑉 = (𝑉 ′

𝜌)2𝑔𝜌𝜌

so we can write the transport equation as

𝜕𝑛

𝜕𝑡
+

1

𝑉 ′
𝜌

𝜕

𝜕𝜌
𝑉 ′
𝜌⟨Γ𝜌⟩ = 𝑆,

where we have replaced ⟨𝑛⟩ with 𝑛 following the assumptions of the 1-D version of mean field transport
theory.

With all quantities now expressed in terms of flux quantities, we are free to characterise the transport
flux ⟨Γ𝜌⟩ in an arbitrary way, so long as only flux quantities appear. The flux expansion within the flux
surface as well as expansion or contraction of surfaces of constant 𝜌 is treated using the metric coefficient
𝑔𝜌𝜌 which is dimensionless. This way we can characterise transport in terms of an effective diffusivity
and an effective frictional slip velocity which are given in SI units. By convention both of these are done
solely via 𝑔𝜌𝜌 for convenience, also reflecting that the effective velocity is actually marking off-diagonal
diffusive elements. Our convention for this follows the ETS code and is given by

⟨Γ𝜌⟩ = ⟨𝑔𝜌𝜌⟩
(︂
𝑛𝑉eff −𝐷eff

𝜕𝑛

𝜕𝜌

)︂
So despite the special spatial distribution of any particular transport process (ie, the underlying instability
or nonlinear free energy access), the flux-surface averaged flux itself and its expression in terms of
diffusion and frictional slip are identical characterisations.

3.3.3 Metric Coefficients

Transport modellers want the Ds and Vs as physical quantities in SI units. In general the fluxes are
(magnetic) flux surface averaged quantities, which implies the existence of metric elements in the con-
version. In our case we need ⟨𝑔𝜌𝜌⟩ where 𝜌 is the toroidal flux radius in meters, so the metric elements
are dimensionless. In the equilibrium CPO, this is gm3 under equilibrium%profiles_1d in the structure.

Note this is different from the ASTRA code which casts the Vs as proper velocities, i.e., with one factor
of grad-rho given by ⟨

√
𝑔𝜌𝜌⟩ which is gm7 under equilibrium%profiles_1d in the structure. The units

are the same and the informational content is the same, but this difference has to be taken into account
in any transport modelling and benchmarking.

84 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.3.4 Heat Fluxes

The heat flux is treated in a similar way, with transport equation

3

2

𝜕𝑝𝑒
𝜕𝑡

+
1

𝑉 ′
𝜌

𝜕

𝜕𝜌
𝑉 ′
𝜌⟨𝑞𝜌𝑒 ⟩ = 𝑄𝑒 +

∑︁
ions

𝑇𝑒𝑖,

for electrons, with 𝑇𝑒𝑖 giving the species transfer and 𝑄𝑒 the source. For ExB transport the heat flux has
a advective (also called convective) and a conductive piece given by

𝑞𝐸 = 𝑞𝐸cond + (3/2)𝑇Γ𝐸

which appears with a 3/2 due to the Poynting cancellation. For magnetic flutter transport the advective
piece appears with the usual factor,

𝑞𝑚 = 𝑞𝑚cond + (5/2)𝑇Γ𝑚

Here the forms are given for each species and 𝐸 and 𝑚 refer to the ExB eddy and magnetic flutter
channels, respectively. For reasons given below we are neglecting the magnetic flutter piece Γ𝑚 for the
time being, and then the flutter piece merely adds to the heat diffusivity.

The forms of these due to the fluctuations are then

⟨𝑞𝜌⟩ = (3/2)⟨̃︀𝑝̃︀𝑣𝜌𝐸⟩ + ⟨̃︀𝑞‖̃︀𝑏𝜌⟩
which breaks into advective and conductive pieces according to linearisation of the pressure fluctuations

⟨𝑞𝜌cond⟩ = (3/2)𝑛⟨ ̃︀𝑇̃︀𝑣𝜌𝐸⟩ + ⟨̃︀𝑞‖̃︀𝑏𝜌⟩ ⟨𝑞𝜌adv⟩ = (3/2)𝑇Γ = (3/2)𝑇 ⟨̃︀𝑛̃︀𝑣𝜌𝐸⟩
hence the density fluctuation piece is accounted for by the particle flux. Neglect of the magnetic flutter
advective piece (and particle flux) is the same as neglect of the ̃︀𝑢‖̃︀𝑏𝜌 nonlinearity (in the delivery of the
results, not in the turbulence computations themselves).

The total conductive flux is then represented by

⟨𝑞𝜌cond⟩ = ⟨𝑔𝜌𝜌⟩
(︂
𝑛𝑇𝑌eff − 𝑛𝜒eff

𝜕𝑇

𝜕𝜌

)︂
with 𝜒 and 𝑌 giving the heat diffusion and frictional slip pieces for each species, respectively (these are
in diff_eff and vconv_eff in the CPO for each quantity).

Operationally, the turbulence module communicates the diff_eff and vconv_eff due to each transport
channel for each species to the transport solver, and the metric coefficients are used by both modules. The
two modules can be on arbitrarily different grids, which communicate through standard interpolation.
This despite the fact that transport at the micro-level is angle dependent (in general, it can be 3-D in
the time average if the sources are 3-D). The effective transport is 1-D so long as parallel sound transit
within the flux surface remains fast compared to the local transport time. This breaks down anyway
in the edge, so the fact that the volume is a problematic coordinate and the flux surface average is a
problematic operation on open field lines doesn’t enter.

3.3.5 Ds and Vs from Turbulence Codes to Transport Solvers

To serve the results from turbulence codes to transport solvers, we have to turn the fluxes (results) into
diffusivities and effective velocities (coefficients, Ds and Vs for short), which represent more informa-
tion than is at hand. Transport solvers must work with Ds and Vs because they use implicit schemes.

3.3. Turbulent Flux Quantities in Transport Models 85

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

The matrix must be diagonally dominant; hence one cannot simply use the Vs. Fluxes which are zero
and/or negative should be given with positive diffusivities for the solvers to work. We need a set of rules
to provide this.

Considering the particle and heat transport fluxes for a given species, we convert the gradient in to a
logarithmic derivative and express the flux in terms of a specific flux, which has units of velocity,

𝐹 =
1

𝑛
⟨𝑔𝜌𝜌⟩−1⟨Γ𝜌⟩ = 𝑉eff −𝐷eff

𝜕 log 𝑛

𝜕𝜌

𝐺 =
1

𝑛𝑇
⟨𝑔𝜌𝜌⟩−1⟨𝑞𝜌cond⟩ = 𝑌eff − 𝜒eff

𝜕 log 𝑇

𝜕𝜌

wherein the conductive part of the heat flux (without the 3Γ/2 enters.

The choice of what to do with the Ds and Vs is somewhat arbitrary. The needs of implicit transport
solvers is for a positive D regardless of the value or sign of either flux. We decide this by putting a limit
on the effective Prandtl number or its inverse: the larger specific flux is taken to be entirely diffusive, with
the effective velocity set to zero. Furthermore, to address cases with very small or negative gradients,
we use proxy variables for the scale lengths to calculate the provisional diffusivities before using the
Prandtl number limitation to turn these into actual diffusivities. Finally, the rest of the flux is asigned to
the effective velocity, so that the D and V formula reflects the actual specific flux.

The Prandtl number limitation is expressed as follows. If the smaller specific flux is within a factor
of 5 of the larger, then both are purely diffusive and the effective velocities are both zero. If not, then
the D ratio is set to 5, with the result that the smaller D, having been corrected, is accompanied by the
corresponding V, which is now nonzero. The specific flux with the larger D will be returned with a V
which is zero.

The rationale is that the turbulent mixing by the ExB velocity affects all processes, but that linear forcing
can shift the average phase shift of the fluctuations such that the effective flux can be small or negative.
The simplest example is adiabatic electrons, for which the ion heat flux is robust but the particle flux is
zero. In most situations the specific heat flux will be the larger, and hence the familiar situation is that
of a D and V for the particle flux but a D (the chi) only for the conductive heat flux.

The full algorithm starting with the specific fluxes appears as

𝐿−1
𝑛 = max

(︂
1

𝑅
,

⃒⃒⃒⃒
𝜕 log 𝑛

𝜕𝜌

⃒⃒⃒⃒)︂
𝐿−1
𝑇 = max

(︂
1

𝑅
,

⃒⃒⃒⃒
𝜕 log 𝑇

𝜕𝜌

⃒⃒⃒⃒)︂
𝐷′ = |𝐹 |𝐿𝑛 𝜒′ = |𝐺|𝐿𝑇

𝐷 = max

(︂
𝐷′,

1

5
𝜒′
)︂

𝜒 = max

(︂
𝜒′,

1

5
𝐷′

)︂
𝑉 =

(︂
𝐹 +𝐷

𝜕 log 𝑛

𝜕𝜌

)︂
𝑌 =

(︂
𝐺+ 𝜒

𝜕 log 𝑇

𝜕𝜌

)︂
and all four elements are set. Note that the channels are done in parallel except for the Prandtl correction,
in which the Max’s are taken sequentially. For the provisional diffusivities, absolute values are used to
ensure positive values which are needed by transport solvers.

Note how in the end the actual gradients are used. If the gradients are moderate then their actual values
are used, and if the Prandtl correction is not invoked, then both channels are diagonal. In any case the full
relation is used to get the effective velocities (V and Y) so having set the rules to handle the arbitrariness
of the diffusivities (D and chi) to guarantee reasonable diagonal dominance in a transport solver, the D’s
and V’s agree with the fluxes themselves.

If there are more than two specific fluxes per species to consider, then we treat each scale length sepa-
rately as above and use N-way maxima in the Prandtl correction for the N channels.

86 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.3.6 Ambipolarity

There remains the issue of ambipolarity of the D and V for particle flux. For a pure singly charged
plasma the ion and electron Ds and Vs should be equal. Even if the turbulence model is gyrokinetic or
gyrofluid, in which case the gyrocenter charge density is not zero but is equal to the generalised vorticity
(polarisation), the quantities given to a transport solver should follow the rules for a fluid representation.
However, transport modelling usually applies ambipolarity rules to the electrons after computing the
ions, while the action of turbulence is actually the other way around: Dynamical alignment refers to
the process by which (1) electron parallel dynamics controls the electrostatic fluctuations, then (2) the
resulting ExB velocity advects all species equally. So we correct the particle fluxes by assuming the
electrons determine the D according to the above procedure and then (1) the fluctuations in the flux-
inducing part of the spectrum for the logarithmic densities are the same, and (2) the D’s are the same.
Then the V’s are solved for again, by taking

𝐷𝑧 = 𝐷𝑒 = 𝐷 𝑉𝑧 = 𝑉𝑒 +𝐷
𝜕 log 𝑏𝑧
𝜕𝜌

𝑏𝑧 = 𝑛𝑧/𝑛𝑒

This is better than the transport modelling convention but will give them the same information in a
different way, and they will compute ambipolar particle fluxes (radial transport of charge is zero).

3.3.7 Statistical Character

Turbulence has a statistical character, so convergence to a mean is not monotonic and when within one
std dev of the mean there is no further convergence. The diffusivity for ExB turbulence is comparable to

𝐷𝐸 = ⟨(̃︀𝑣𝐸)2⟩
⧸︀
⟨(𝜛)2⟩1/2 𝜛𝐸 =

𝑐

𝐵
∇2

⊥
̃︀𝜑

where𝜛𝐸 is the ExB vorticity fluctuation, and these angle brackets denote the ensemble average. To get
an ensemble average over a statistical quantity in practice, one must do some sort of finite-time running
averaging.

For transport modelling, the transport coefficients derived from a turbulence code should always be given
in terms of running exponential averages.

3.4 Running Exponential Average

3.4.1 Overview

In conventional transport modelling, turbulent fluxes are modelled in terms of processes which are dif-
fusive in the local relaxation sense, with the average flux given by a diffusion coefficient and an effective
pinch velocity. The equations are of dominantly parabolic character, which means in practice that an
iterate will move monotonically towards the solution in parameter space.

This is not the case for turbulence. Convergence is statistical, which is something different than a dif-
fusive relaxation. If turbulence is stationary, it is meant only that the mean of a distribution of iterates
is stationary, not the iterates themselves. The standard deviation can be significant, of order unity com-
pared to the mean, of any distribution of iterates.

This makes for a noisy signal if the output of a turbulence code is used for transport coefficients in a
workflow. A sound way to overcome the attendant problems is to use a moving average. Even an average
over a moving window can be as noisy as the original signal, however. What works better is a weighted
average over recent past values. A method to get this is called a running exponential average, which is

3.4. Running Exponential Average 87

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

essentially the same thing as a convolution integral over an exponential memory decay times the past
signal. It turns out to be very easy to obtain this without saving past values.

The original reference for the following is S W Roberts, “Control Chart Tests Based on Geometric
Moving Averages,” Technometrics 1 (1959) 239-250, cited by all the good WWW resources, including
the Wikipedia page on Moving Averages and the NIST Statistical Handbook online.

3.4.2 Definition

Consider a process 𝑝(�⃗�) which is a functional of dependent variables �⃗�. Measure 𝑝 at discrete time
intervals 𝑡𝑛, with values 𝑝𝑛 = 𝑝(𝑡𝑛) and interval length 𝜏 = 𝑡𝑛− 𝑡𝑛−1. The moving exponential average
𝐴𝑛 = 𝐴(𝑝𝑛) on the 𝑛-th interval is defined as

𝐴𝑛 = 𝜖𝑝𝑛 + (1 − 𝜖)𝐴𝑛−1 with 𝜖 = 𝛼𝜏

in which the small parameter 𝜖 is given in terms of the interval 𝜏 and an inverse time constant 𝛼.

In the first instance 𝑝 is measured there is no 𝐴 so the first value of 𝐴 is simply set to 𝑝 since it can be
assumed that the initial state for 𝑝 has persisted for infinite previous time up to the initial time point.

3.4.3 Differential Equation

The equivalent differential equation is found by forming the relevant finite difference,

𝐴𝑛 −𝐴𝑛−1 = 𝜖(𝑝𝑛 −𝐴𝑛−1)

which we can also cast as

(1 − 𝜖)(𝐴𝑛 −𝐴𝑛−1) = 𝜖(𝑝𝑛 −𝐴𝑛)

Taking the limit 𝜏 → 0 is the same as taking 𝜖→ 0 so both of these expressions become equivalent to

𝜕𝐴

𝜕𝑡
= 𝛼(𝑝−𝐴)

whose solution is given below.

3.4.4 Equivalence to Past-Time Convolution Integral

The solution of the above differential equation is given by the method of undetermined coefficients,

𝜕𝐴

𝜕𝑡
+ 𝛼𝐴 = 𝛼𝑝 𝑒−𝛼𝑡 𝜕

𝜕𝑡

(︀
𝑒𝛼𝑡𝐴

)︀
= 𝛼𝑝

𝜕

𝜕𝑡

(︀
𝑒𝛼𝑡𝐴

)︀
= 𝛼𝑝𝑒𝛼𝑡

We may integrate this over all past time, to find

𝐴(𝑡) =

∫︁ 𝑡

−∞
𝛼𝑑𝑡′𝑝(𝑡′)𝑒−𝛼(𝑡−𝑡′)

This is a convolution integral over the kernel 𝑒−𝛼(𝑡−𝑡′) and the signal 𝑝(𝑡′). The time constant 𝛼−1 is
just the memory decay time, while if 𝑝 is constant then the integral yields unity times 𝑝. This is the
same as the normalisation with the (1 − 𝜖) factor in the average formula above, which is needed since
the interval is of finite size.

Hence the running exponential average is operationally the same as a memory decay integral over past
time. The elegant feature is the need to keep only the current value of 𝐴, as it already contains all that is
needed of the past time evolution of 𝑝.

88 Chapter 3. European Transport Simulator (ETS)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

3.4.5 notes

Some properties of the running exponential average and how to choose its main time-memory parameter:

• The (1 − 𝜖) factor is needed for normalisation

• if 𝑝 = constant then 𝐴 = 𝑝 for all 𝑡

• the integral with 𝛼𝑑𝑡′ yields unity

• the 𝜖 and (1 − 𝜖) factors add to unity

• therefore set the first value of 𝐴 to the first value of 𝑝

• in choosing the memory decay time 𝛼−1 . . .

• one should have 𝛼𝜏𝑐𝑜𝑟 ≪ 1

• best results are for 𝛼𝜏𝑠𝑎𝑡 ∼ 1

• some trial/error required; edge turbulence likes 𝛼−1 = 200𝐿‖/𝑐𝑠

In these expressions 𝜏𝑐𝑜𝑟 and 𝜏𝑠𝑎𝑡 are the correlation and saturation times of the turbulence, respectively.

3.4. Running Exponential Average 89

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

90 Chapter 3. European Transport Simulator (ETS)

CHAPTER

FOUR

EQUILIBRIUM AND MHD STABILITY WORKFLOW (EQSTABIL)

4.1 Workflow rationale

The EQSTABIL workflow is a Kepler workflow aimed at performing linear MHD stability analysis of
tokamak plasma equilibria for a single or multiple toroidal mode numbers when executed. The high
resolution equilibrium actors consider axisymmetric toroidal static plasmas with isotropic pressure and
the linear MHD stability models stem from single fluid ideal/resistive MHD with compressibility.

The workflow is meant for straightforward stability calculations of any plasma scenario, reading from a
pre-existent WPCD database shot/run/time entry. Therefore,

• Equilibrium data need to be read from experimental databases and stored locally on the platform
where EQSTABIL is run. Alternatively the equilibrium IDS could be the output of another work-
flow (e.g. EQRECONSTRUCT or ETS)

• It is not meant for parametric studies in a single workflow execution e.g. process several time
slices or scan over resistive wall position or number of poloidal harmonics. Dedicated runs for
such cases are necessary, storing each run on a dedicated output shot/run_out database entry. The
workflow may be subject to upgrades/revisions to accomodate new features that facilitate/enhance
user experience so stay tuned for News and Recent activity.

4.2 Workflow organization & design

The top level layout of the workflow is shown below.

91

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

The workflow is organised in four sequential steps :

4.2.1 Initialization

Composite actor used to initialize the workflow. It reads from the IMAS database that is specified by
local variables (user, device, shot, run_in) and for the closest time sample to local variable time . If
the user reads the input data from some other user database, the output data will however be written on
his/her own database with shot/run_out id.

-> The workflow local variable device must be the same as the environment variable TOKAMAK-
NAME. In case the two do not match the workflow stops execution. The user must close the workflow,
set imasdb with the correct device name and run the workflow.

-> Validity checks (void/not void) are made on the input equilibrium and core_profile IDSs (MARSGW
actor can use core_profile for density profile). If the equilibrium IDS is not considered valid the work-
flow stops. If the core_profile IDS is not considered valid, the workflow continues to run but the user
can still have the option to stop it before executing the chosen MHD code.

At the exit of the Composite actor, a Plasma_reference bundle (list of Kepler variables, mimicking the
ETS bundle is returned. This facilitates the future coupling of the workflow to the ETS.

4.2.2 FixedBndCode

Composite actor that prepares/calculates the equilibrium to be passed later to the MHD stability codes.
This composite actor is composed of 3 main steps:

4.2.2.1 Redefining the plasma boundary (Cutoff)

This is deemed necessary when the input equilibrium (reconstructed/predictive equilibrium) as a sepa-
ratrix as plasma boundary since at this moment none of the flux coordinates based equilibrium codes
handles/returns plasmas with a separatrix.

If the input equilibrium does not contain a Psi(R,Z) equilibrium mapping the cut-off is not possible and
thus the workflow execution will be stopped.

Redefining the plasma boundary is done by setting cut_eq: yes and places the new plasma boundary at
a flux surface corresponding to cut_off (in percentage) of the input boundary flux.

The plasma profiles are also cut-off accordingly. An equilibrium bundle exits the actor containing oc-
currence=1 for the cut-off input equilibrium and occurrence=2 for the original equilibrium. If cut_off:no
then both occurrences contain the original equilibrium.

92 Chapter 4. Equilibrium and MHD Stability workflow (EQSTABIL)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

A plot of the original + cut_off equilibrium summary is shown. Closing the plot window leads to the
second stage.

4.2.2.2 Calculation of Equilibrium (Fixbndequil)

Calculation of the high resolution equilibrium with 3 possible codes (CAXE, CHEASE, HELENA). The
cut-off equilibrium (or original one) is passed to the equilibrium codes. The output HR equilibrium is
added to the equilibrium bundle such that in the end one has occurrence=0 for the HR, occurrence=1
for the cut-off input equilibrium (or the original if not cut_off is requested) and occurrence=2 for the
original equilibrium.

4.2.2.3 Visualization (Visual)

Visualization part. This part plots the (R,Z) flux map of the HR equilibrium and the most relevant
profiles. The figures are saved automatically on closing the windows at the path indicated in the top
level accordingly Kepler variable.

4.2.3 StabCode

Composite actor for the MHD stability calculation using 4 possible linear MHD stability codes (ILSA,
KINX, MARS, MARS-F). After execution of the stability code is completed, plotting of the radial
component of the displacement vector eigenfunction in the plasma domain is shown (real and imaginary
parts). In case multiple toroidal mode numbers are set (ILSA or KINX), one plot window per each
toroidal eigenmode is returned. A Copy in EPS format of each window is stored on the path defined by
Kepler variable path

The Multiple Tab display window will also display the output flag of the code execution i.e. if the output
is valid and the result can be used or not. The plasma bundle, on exit, is updated with the MHD cpo
from the stability code.

4.2.4 Finalize

Composite actor to wrap up the final plasma bundle, with the equilibrium IDS containing 3 occurrences
and one occurrence of the MHD IDS.

N.B. Only a single time slice of equilibrium and MHD IDSs is written, the remaining plasma bundle
IDSs are written “as is” (whatever time slices).

4.2. Workflow organization & design 93

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

94 Chapter 4. Equilibrium and MHD Stability workflow (EQSTABIL)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

4.3 Actors involved

Name Location Description
Check_Device INITIALIZATION

Checks if the device Kepler
variable coincides with the
environment
variable TOKAMAKNAME. If
not the run stops.

SELECT_TIME_CORE/EQ INITIALIZATION

Selects time slice of IDSs
matching/closest
to the requested time in time
Kepler variable

Check Coreprof/Equil Time
and Flag

INITIALIZATION

Checks the output_flag of the
input IDSs to know if they are
valid and
prints the actual time stamp
retrived
from both IDSs (if time = -1
and
output_flag is negative then the
IDS
is not valid). If the equilibrium
is
considered invalid a message in
displayed
on the Multi Tab Display
window and
workflow execution is stopped.
If the
core_profile is considered
invalid a
message is displayed on the
Multi Tab
Display window but the
workflow will
continue since some of the
MHD codes
handle plasma density
internally as code
parameter and their execution
is not affected.

Cutoff FixedBndCode

Performs the cut-off of the
input
equilibrium if requested and
provided the input CPO has a
poloidal
flux (Psi) mapping i.e.
Psi(R,Z). If not
present then workflow
execution stops and a
message is displayed on the
Multi Tab
Display window. A plot with
the
original (in blue) and cut
equilibrium
(in green) is shown when
cut_off: yes
A plot with just the original (in
blue) equilibrium is shown
when cut_off : no

NOTE: A useful trick to STOP
the workflow execution*->
when a
Python plot window is shown,
Press the STOP
button on the Kepler GUI
before closing
the plot window. This ensures
workflow
execution is stopped since
Kepler is
waiting for Python process to
proceed.

Fixbndequil FixedBndCode

Selects from a pool of 3
equilibrium
codes the one to launch
according to
the value of the Kepler variable
eqcode

Caxe FixedBndCode

The CAXE code.
It can operate jointly with
KINX only.

Chease FixedBndCode

The CHEASE code.
It can operate jointly with
ILSA, MARS
and MARS-F

Helena FixedBndCode

The HELENA code.
It can operate jointly with
ILSA, MARS
and MARS-F

Visual FixedBndCode

Visualize the resulting
equilibrium.
A Copy in EPS format is stored
on the path
defined by Kepler variable
%BLUE%path

Ilsa StabCode

The ILSA code suite.
At the moment only the
MISHKA1 kernel
(ideal incompressible MHD) is
active

Kinx StabCode The KINX code.
Marsgw StabCode The MARS code
Marsf StabCode The MARS-F code
PLOT_EIGENFUNCTION StabCode

Visualize the real and
imaginary
eigenfunction components. In
case
multiple toroidal mode
numbers are set
(ILSA or KINX), one plot
window per each
toroidal eigenmode is returned.
A Copy in
EPS format of each window is
stored on
the path defined by Kepler
variable path

4.3. Actors involved 95

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

4.4 Setting up Workflow and Actor parameters

4.4.1 Setting workflow parameters

The workflow has basic settings in order to work.

• shot : the shot number on the user database (or from another user) where to read the reference
equilibrium from (shot/run_in pair)

• run_in : the run number where the reference equilibrium is (shot/run_in pair)

• run_work : placeholder run for the temporary Kepler IDSs

• run_out : run number where the final results of the run will be stored (user running the work-
flow/shot/run_out). Since the input equilibrium can be a reconstruction that goes beyond the sep-
aratrix, 3 occurrences of the equilibrium are saved (original eq., cut equilibrium inside separatrix
and corresponding high resolution equilibrium).

• user : username. Reading from someone else database is possible but the run_out will naturally
be written to personal database only.

• device : device database where the input reference data is. MUST BE the same as env variable
TOKAMAKNAME

• time : time slice (in equilibrium IDS) to be analysed in case the input shot/run_in contains many
time slices.

• path : temporary folder where to dump the plots generated. Also used to store output files (used
by HELENA/ILSA only)

• cut_eq :

– yes : cut the input equilibrium (necessary if high resolution equilibrium code cannot handle
separatrix plasma equilibria)

– no : input equilibrium is used “as is”.

• cut_off : float]0,1], specifies the percentage of the separatrix flux that will define the poloidal
flux of the new plasma boundary.

• eqcode : chease/caxe/helena. The equilibrium code to be used

• stabcode : ilsa/kinx/marsgw/marsf. The MHD stability code to be used

The user can always prevent the workflow from proceeding to the calculation of the high resolution
equilibrium after the cut-off stage by Pressing the STOP button in Kepler GUI before closing the plot
window with the summary of the equilibrium.

4.4.2 Setting actor parameters

Actor parameters are set on the actors themselves (not passed by the workflow). To access the actors
codeparam the easiest route is to :

1. Click on “Outline” Tab (below the “Pause” button)

2. Type the name of the actor and press “Search” (or Enter)

3. On the final item in the chain of the actor composite, right click and press “Configure”. A pop-up
panel appears

96 Chapter 4. Equilibrium and MHD Stability workflow (EQSTABIL)

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

4. Click on “Edit Code Parameters” and a new window appears

5. Edit the code parameters and Press “Save & Exit”

6. Press “Commit” and setting is completed

4.5 EQSTABIL Tutorial

Tutorial on using EQSTABIL workflow is available in PDF.

4.5. EQSTABIL Tutorial 97

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

98 Chapter 4. Equilibrium and MHD Stability workflow (EQSTABIL)

CHAPTER

FIVE

THE EQRECONSTRUCT WORKFLOW

5.1 1. Workflow rationale

The EQRECONSTRUCT workflow is a Kepler workflow aimed at performing the reconstruction of the
plasma equilibrium from diagnostic data. The workflow can perform both a single time reconstruction
and over a defined time range with a user defined sampling rate. The workflow design facilitates the
integration of a variety of plasma reconstruction equilibrium codes, all using the same input data from a
user defined IMAS database. In addition, during all workflow stages (including initialization and final-
ization), the experimental and modeling data are cast under the same conceptual data bundling as used
by the ETS, HCD and EQSTABIL workflow. This deliberate choice greatly facilitates the interfacing
to any of such workflows. In fact, elements of the EQSTABIL workflow can and were seamlessly inte-
grated in the workflow namely the stage for high resolution equilibrium actors for axisymmetric toroidal
static plasmas with isotropic pressure.

The workflow includes built-in visualization plugin options to visualize the equilibrium reconstruction
(and high resolution calculation) during the run execution. This allow for an immediate inspection of
the results. Some fundamental data verification is performed on the input and processed data to ensure
a “safe landing” of the workflow in case any problems are identified.

The workflow is presently targeting primarily straightforward magnetics only plasma reconstruction cal-
culations in any plasma scenario. Interferometry, polarimetry and Motional Stark Effect assisted recon-
structions are also possible since no workflow changes are necessary. Future versions of the workflow
will incorporate kinetic data (thermal/fast pressure).

The workflow is not meant for running use cases that require strong user intervention during the run
execution e.g. setting different code parameters at different time steps (though possible by pausing the
workflow, changing the code parameters and resuming) for deselecting given diagnostic channels or
changing regularization coefficients.

5.2 2. Workflow organization & design

The top level layout of the workflow is shown below.

As shown in the workflow layout, the workflow execution typically follows the following steps (further
detailed below):

• START (set up input imasdb database and simulation time range)

• CHECK_DATA (verify data consistency)

• Check TIME (continue simulation if time < time_end)

99

https://portal.eufus.eu/twiki/bin/view/Main/ETS
https://portal.eufus.eu//documentation/ITM/html/imp5_workflow__imp5hcd.html

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• Reconstruct (calculate reconstructued equilibrium and high resolution equilibrium)

• SAVE SLICE (save time slice on database)

• ADVANCE TIME (advance time to next time step)

• STOP THE RUN (end the simulation and stop)

5.2.1 I - START

Composite actor used to initialize the workflow. It reads experimental data from an ITM database and
assembles the plasma bundle. The database details e.g. _user, device, shot, runin are configurable in the
actor when double clicking on the actor (see Figure below).

5.2.2 II - CHECK_DATA

In this composite actor a basic sanity check is performed on the input data and appropriate action is
taken e.g. if there is no magnetics sensor data it is pointless for the workflow to proceed and execution
is immediately stopped. Additional checking and action includes for instance flagging as invalid any
sensor data with flatline signal (see Figure below for the sequence of 2 steps)

5.2.3 III - Reconstruct

In this composite actor the actual calculation of the reconstructed equilibrium and if requested of the
equivalent high resolution equilibrium (with cut-off plasma boundary with X-point removed) takes place.
The user can easily gain access to several options for workflow execution by double clicking on the actor
(see Figure below).

Among the several options the user can choose :

100 Chapter 5. The EQRECONSTRUCT workflow

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

5.2. 2. Workflow organization & design 101

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• To perform plasma equilibrium reconstruction only (FBE_only = yes/no)

• Which code to use to perform the equilibrium reconstruction (FBEcode)

– EQUAL

– NICE

– EFIT++

– CLISTE

• Which code to use for high resolution equilibrium (HREcode)

– HELENA

– CHEASE

– CAXE

• If cutting the equilibrium to be piped to the high resultuion calculation is necessary (cut_eq
= yes/no) and if so at what percentage of the normalised separatrix flux (0<cut_off<1)

• To visualise the reconstruction and high resolution results during workflow execution (Visu-
alise_FBE, Visualise_HRE=yes/no)

When the user chooses to cut the boundary to perform the high resolution equilibrium calculations:

• A new plasma boundary is determined from the calculated 2D flux map

• The plasma profiles are also cut accordingly (the plasma is not artifically “shrank”)

• The total toroidal plasma current is not recalculated (equilibrium code should be set to use the
boundary poloidal magnetic flux as boundary confition)

• A plot of the original + cut_off equilibrium summary is shown if _VisualiseHRE=yes.

When the user chooses to visualise any of the calculated equilibria (_VisualiseFBE=yes or _Visu-
aliseHRE=yes):

• A window showing the 2D poloidal flux map and radial profiles of Pressure, Toroidal averaged
current density and q-profile is displayed for 4 seconds.

• Corresponding image files are saved at the filesystem path indicated by the user selected path
variable (START actor setup).

5.2.4 IV - SAVE SLICE

In this composite actor the calculated equilibria are saved at each time step. Depending on whether the
user choses to calculate also the high resolution equilibrium and if the Save_FBE_only parameter is set
to “yes” or “no”, a different number of occurrences of the equilibrium IDS can be stored (see Figure
below).

The purpose of saving at each time slice several versions of the equilibrium is to grant extra flexibility.
If the user decides to calculate the high resolution equilibrium associated to the reconstructed plasma
equilibrium, it might be worth store all 3 stages of the calculated equilibrium. This is managed by using
multiple occurrences of the equilibrium IDS.

High resolution equilibrium is stored as occurrence=0, the cut boundary “precursor equilibrium” as
occurrence=1 and the equilibrium reconstruction as occurrence=2. To control the imasdb saving option
please refer to the SAVE SLICE parameter details.

102 Chapter 5. The EQRECONSTRUCT workflow

https://portal.eufus.eu/twiki/bin/view/Main/EquilibriumCode_EQUAL
https://portal.eufus.eu/twiki/bin/view/Main/EquilibriumCodeNICE
https://portal.eufus.eu/twiki/bin/edit/Main/EquilibriumCode_EFITpp?topicparent=Main.KeplerWorkflow_EQRECONSTRUCT;nowysiwyg=0
https://portal.eufus.eu/twiki/bin/view/Main/EquilibriumCode_CLISTE
https://portal.eufus.eu/twiki/bin/view/Main/EquilibriumCode_HELENA
https://portal.eufus.eu/twiki/bin/view/Main/EquilibriumCode_CHEASE
https://portal.eufus.eu/twiki/bin/view/Main/EquilibriumCode_CAXE

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

5.3 3. Installing and running the workflow

Establish the IMAS environment by typing

module purge
module load cineca
module load imasenv

export KEPLER_DIR=$ITMWORK/imas_kepler

if it is the first time you go through this process you will need to create the imas_kepler directory

mkdir $ITMWORK/imas_kepler

(the one below is the latest version of the dressed kepler containing all the actors for EQRECON-
STRUCT, EQSTABIL and ETS-6)

module switch kepler/2.5p4-3.0.6_dressed_3.25
kepler_install my_2.5p4-3.0.6_dressed_3.25
kepler_load my_2.5p4-3.0.6_dressed_3.25

Once you have installed kepler you do not need to repeat this operation and it will be enough to execute
the kepler_load instruction.

Now you need to check out the workflow by typing (only for first time users)

svn co --username g2mroma https://gforge6.eufus.eu/svn/eqstabil/tags/imas_3.25.0_4.4.0/
→˓workflows eqstabil_workflow

Create the database folder with the name of the device you wish to run the equilibrium for

imasdb JET

Retrieve the data for magnetic-only equilibrium by launching IMASviz or TCV2IDS

Import the following IDSs

magnetics, pf_active, (pf_passive), (iron_core), wall, tf

Note that iron_core is only needed for JET and WEST and pf_passive is only desirable (not supported
by all equilibrium reconstruction actors)

You are now ready to launch Kepler by typing

5.3. 3. Installing and running the workflow 103

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

kepler

load the EQRECONSTRUCT workflow from your eqstabil_workflow directory

For a demonstration video on how to install, setup and run the workflow click the link below

https://www.youtube.com/watch?v=zjX4jJBT1q4&t=242s

5.4 4. Setting up the Workflow and Actor parameters

5.4.1 I - Setting the workflow parameters

The workflow parameters in the START actor are as follows:

• shot : the shot number on the user database (or from another user) where to read the reference
equilibrium from (shot/run_in pair)

• run_in : the run number where the reference equilibrium is (shot/run_in pair)

• run_work: placeholder run for the temporary Kepler CPOs

• run_out: run number where the final results of the run will be stored (user running the work-
flow/shot/run_out). Since the input equilibrium can be a reconstruction that goes beyond the sep-
aratrix, 3 occurrences of the equilibrium are saved (original eq., cut equilibrium inside separatrix
and corresponding high resolution equilibrium).

• user: username. Reading from someone else database is possible but the run_out will naturally
be written to personal database only.

• device : device database where the input reference data is. MUST BE the same as the device set
once running “imasdb” command otherwise the run_out data will end on the wrong database path.

• time_begin: starting time for the run (in seconds).

• time_end: ending time for the run (in seconds).

• time_dt : time step (constant value) while moving from _time*begin* to _timeend.

The workflow parameters in the Reconstruct actor are as follows:

• FBE_only: Set to “yes” if addressing only the plasma equilibrium reconstruction. If set to “no”
the high resolution equilibrium is also calculated.

• FBEcode: Choice for equilibrium reconstruction code to be used.

• Visualise_FBE: Set to “yes” to get a plot of the reconstructed equilibrium at every step.

• Visualise_HRE: Set to yes to get a plot of the high resolution equilibrium derived from the recon-
structed equilibrium at every step.

• HREcode: Choice for high resolution equilibrium code to be used.

• cut_eq:

– yes: cut the input equilibrium (necessary if high resolution equilibrium code cannot handle
separatrix plasma equilibria)

– no: input equilibrium is used “as is”.

104 Chapter 5. The EQRECONSTRUCT workflow

https://www.youtube.com/watch?v=zjX4jJBT1q4&t=242s

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• cut_off: float]0,1], specifies the percentage of the separatrix flux that will define the poloidal flux
of the new plasma boundary.

• path: temporary folder where to dump the plots generated. Also used to store output files (used
by HELENA).

The workflow parameters in the SAVE SLICE actor are as follows:

• Save_FBE_only:

– yes : only occurrence=0 is saved. If the user set _FBEonly=yes then the equilibrium recon-
struction is saved, otherwise the high resolution equilibrium is stored.

– no : occurrences = 0,1,2 are saved. Only meaningful if the user set _FBEonly=no. High
resolution equilibrium is stored as occurrence=0, the cut boundary “precursor equilibrium”
as occurrence=1 and the equilibrium reconstruction as occurrence=2

The user can always stop the workflow by Pressing the STOP button in Kepler canvas.

5.4.2 II - Setting actor parameters

Actor parameters are set on the actors themselves (not passed by the workflow). To access the actors
codeparam the easiest route is to :

1. Click on “Outline” Tab (below the “Pause” button in the KEPLER canvas)

2. Type the name of the actor and press “Search” (or Enter)

3. On the final item in the chain of the actor composite, right click and press”Configure”. A pop-up
panel appears

4. Click on “Edit Code Parameters” and a new window appears

5. Edit the code parameters and Press “Save & Exit”

6. Press “Commit” and setting is completed

5.5 6. News and Recent activity

8th March 2019: JET version of the workflow tested successfully on test/84600/28 database. Only
EQUAL + HELENA codes included. Successful run from t=49s to 53s with both EQUAL and HELENA
being executed and the corresponding data stored on the IMAS database (run=33).

5.5. 6. News and Recent activity 105

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

106 Chapter 5. The EQRECONSTRUCT workflow

CHAPTER

SIX

TURBULENCE WITH SYNTHETIC DIAGNOSTICS WORKFLOWS

The turbulence with synthetic diagnostics workflows consist of the HESEL and RENATE actors for
turbulence simulation and synthetic diagnostics.

6.1 HESEL Documentation

The HESEL code is a numerical solver for the set of equations that describe the HESEL model. The
HESEL model is a drift-reduced Braginskii type of two-fluid model for electron density, electron and
ion pressures, and E-cross-B vorticity of a quasi-neutral plasma. The domain is a 2D slab perpendicular
to the magnetic field line located at the outboard-midplane of a tokamak. The slab domain covers parts
of the turbulent edge and SOL regions.

The HESEL 2D slab domain. Images from A.H. Nielsen et al 2019 Nucl. Fusion 59 086059.

The solutions typically show the development of filaments (blobs) near the last-closed-flux-surface. The
filaments propagate radially outwards through the SOL region, and carry heat and paticles away from
the confined edge region.

107

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Snapshot of solution fields for HESEL simulation

There are plenty of publications in scientific journals based on HESEL (and its precessor ESEL) simu-
lation data, in which the model equations are also described in detail. Below is listed a selected set of
publications:

• Study of power width scaling in scrape-off layer with 2D electrostatic turbulence code based on
EAST L-mode discharges

• Synthetic Edge and SOL Diagnostics: A Bridge between Experiments and Theory

• ExB mean flows in finite ion temperature plasmas

• Numerical simulations of blobs with ion dynamics

The HESEL code structure and how to run it as a stand alone code is described in HESEL as stand-alone,
the workflow wrapper documentation is described in HESEL as an actor, and a guide on how to include
HESEL in the KEPLER workflow is given in HESEL in the KEPLER workflow.

6.1.1 HESEL as stand-alone

HESEL can be run outside the workflow as a stand-alone code, where input are read from an input file
and, optionally, from experimental data profiles. The output data are stored in a HDF5 datafile.

6.1.1.1 Obtaining and building HESEL

The HESEL source code is currenty maintained in a private Github repository (C-HESEL). For obtaining
the source code please request access from ahnie@fysik.dtu.dk.

The following recipe describes how to load and build HESEL on the EUROfusion Gateway infrastruc-
ture.

On the Gateway first make sure the required modules are loaded. This can be assured by

module purge
module load cineca
module load imasenv
imasdb AUG
module unload hdf5
module load hdf5/1.8.17--intelmpi--2017--binary

For future convenience the above code block can be added to the ~/.login file and, if it does not load
upon login, executed by source ~/.login.

Navigate to your Gateway public directory cd ~/public and clone the C-HESEL repository from
GitHub

git clone https://github.com/PPFE-Turbulence/C-HESEL.git

108 Chapter 6. Turbulence with synthetic diagnostics workflows

https://doi.org/10.1063/1.5083063
https://doi.org/10.1063/1.5083063
https://doi.org/10.1088/1741-4326/ab1954
https://doi.org/10.1063/1.4985329
https://doi.org/10.1088/1361-6587/59/2/025012
mailto:ahnie@fysik.dtu.dk

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Navigate into the C-HESEL directory cd C-HESEL and checkout the develop branch to work with the
most recent updates

git checkout develop

Navigate into the FUTILS source directory cd FUTILS_version2.2/src and return

make clean && make -f Makefile.gateway

Navigate back to C-HESEL cd ../.. and return

make clean && make esel

Everything is now set up for you to run HESEL, which is located in C-HESEL/bin/esel.marconi.A3.

6.1.1.2 HESEL input

The stand-alone version of HESEL can be run either entirely from an input file, or in a setup where
the initial density and temperature fields are read from an additional datafile. The probe positions for
synthetic diagnogstics probes are provided in a separate datafile. All input files must be located in the
same directory.

6.1.1.2.1 HESEL input

The HESEL input is read from a plain text file, with the input variables separated by line breaks. An
example of an input file is given here. The main variables are

6.1. HESEL Documentation 109

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Variable Unit Decription
codenametype Machine identifier
shot_no Experiment shot number
run_no Simulation run number
nx Number of spatial grid points in x direction
ny Number of spatial grid points in y direction
xmin rhos Minimum x-axis limit
xmax rhos Maximum x-axis limit
ymin rhos Minimum y-axis limit
ymax rhos Maximum y-axis limit
dt oci^-1 Value of discrete timestep
end_time oci^-1 Duration of simulation
out_time oci^-1 Time between small outputs
outmult Number of small outputs before full fields are written out
edge rhos Width of edge region
SOL rhos Width of SOL region
wall rhos Width of wall region
n0 m^-3 Electron density at last closed flux surface
te0 eV Electron temperature at last closed flux surface
ti0 eV Ion temperature at last closed flux surface
Mp eV Parallel Mach number
A Mass number
Z Charge number
Zeff Effective charge
q Safety factor at last closed flux surface
B0 T Magnetic field on axis
r0 m Minor radius
R0 m Major radius
Lp m Parallel connection length in the SOL region
Lpwall m Parallel connection length in the wall shadow region

The remaining variables in the input file are better left unchanged.

Variable Default value
coordsys 0
gamma 0.00
sigma 0.00
bprof 1.0
damping_nt 1
dissipation_nt

0.

beta 0
mue_n_fac 1.0
mue_p_fac 1.0
mue_P_fac 1.0
mue_w_fac 1.0
ballooning 2
visc_layer_size 0.25
drift_wave_term 2

Continued on next page

110 Chapter 6. Turbulence with synthetic diagnostics workflows

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Table 6.1 – continued from previous page
Variable Default value
drift_wave_Te 1
radial_electric_field 0
MP 0
MP_NS 100000
MP_SR 0.0000005
hyper_factor 0.00000
sheath 2
background 1
background_n 0.025
background_t 1.0
background_time 20
ramb_up 1
ramb_up_time 5000
fp 10
fixed_time 50
init 999
init_ds 1
mean_flow 5
mean_flow_time 0.025
mean_flow_radial 1.0
mean_dissipation 0
randbedingung0 2
bdvala0 0.000000
bdvalb0 0.000000
amp_random0 0.0001
randbedingung1 2
bdvala1 1
bdvalb1 0.00
amp_random1 0.0001
randbedingung2 2
bdvala2 1
bdvalb2 0.00
amp_random2 0.0001
randbedingung3 2
bdvala3 1
bdvalb3 0.00
amp_random3 0.0001

6.1.1.2.2 Profile datafile

The profile datafile provide the initial density and temperature field profiles, which also serve as refer-
ence profiles towards which the solution is relaxed in the innermost edge region of the HESEL domain.
The datafile must have the filename exp_profiles.dat and an example can be found here.

The datafile consists of four space-separated columns of data, so that each row constitute a datapoint. In
each datapoint is the following data

6.1. HESEL Documentation 111

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Column Variable Unit
1 Radial position with LCFS at 0 m
2 Electron density 10^19 m^-3
3 Electron temperature eV
4 Ion temperature eV

6.1.1.2.3 Probe positions

The HESEL code will produce a set of default output data described in HESEL output. Additional
temporally highly resolved 1D data can be added from synthetic probes located in a row througout the
domain. They are poloidally centered in the domain and located with a radial distance of 1 rhos. In
the probe datafile, which must be named myprobe.dat, is specified the number of tips and their relative
location, and the fields measured. An example of a probe datafile is found here.

The format must follow that of the provided example. Each tip has a specified relative position to the
probe position in units of grid point spacing. I.e., the block

TIP1

@TIP1 10.0 0.0 hdf5
density
vorticity
temperature
potential
velocity_radial
velocity_poloidal

adds a probe-tip at 10 grid points radially outwards and at the same poloidal position as that of the
probe. It outputs the electron density (density), E-cross-B vorticity (vorticity), electron temperature
(temperature), the electrostatic potential (potential), radial velocity (volocity_radial), and poloidal ve-
locity (velocity_poloidal) at the specified gridpoint. All output are in Bohm-normalized units.

6.1.1.3 HESEL code structure

The HESEL stand-alone code structure is graphed below

112 Chapter 6. Turbulence with synthetic diagnostics workflows

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

HESEL structure graph

The workflow of the top level functions are described in the following. The function description is meant
to give an high-lelvel overview of the workflow and supplement the in-code comments.

• main(int argc, char *argv[])

The main function is a wrapper for passing the programme arguments argc and argv to the
esel_start_from_c function. The variable argv is a character list of programme arguments and
argc is an integer that denote the number of items in argv.

– esel_start_from_c(itype argc, ctype **argv)

The esel_start_from_c function contains the core workflow of the solver. It creates
the two structures, data and para, that, together with argc and argv, are passed
through the HESEL workflow.

Everything up to the run_esel function is initialization of data, MPI, etc.

The programme arguments are interpreted and applied in func_passing_argv

* func_passing_argv(argc, argv, &data, ¶)

The function determine if the simulation is starting from previous simulation
data or not, by checking, if the flag -restart is in the programme arguments.
It iterates through the other arguments; if -I the input data are to be loaded
from an ini-file, if -H the input data are to beloaded from an HDF5 file, and if
-wrapper the data are to passed from a programme wrapper. The input file op-
tion is stored in the para structure and applied after the set_default_parameters
function.

and the set_default_parameters function is called.

* set_default_parameters(&data,¶)

This function is deprecated and does not alter the data and para structures.

Depending on where the input parameters are stored, one of three functions are
called. The information of input file type is set in the para structure by the

6.1. HESEL Documentation 113

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

func_passing_argv function. If the input are stored in a c-file func_wrapper is
called, in an ini-file func_inifile is called, and in a HDF5 file func_hdf5file is called.

* func_wrapper(argc, argv, &data, ¶)

Checks if the restart option is set to true in the para structure; if so, the code
exits, as that option is not compatible with the wrapper setup.

The function calls a number of subfuntions to initialize the para and data struc-
tures from the input given by the wrapper, that would otherwise be read from
an ini-file as described in HESEL input. All data are appended to the para and
data structures.

* func_inifile(argc, argv, &data, ¶)

Checks if the restart option is set to true in the para structure; if so, the code
exits, as that option is not compatible with the inifile setup.

The function calls a number of subfuntions to initialize the para and data struc-
tures from the input file described in HESEL input. All data are appended to
the para and data structures.

* func_hdf5file(argc, argv, &data, ¶)

The function calls a number of subfuntions to initialize the para and data
structures from the input given by a HDF5 file, that would otherwise be
read from an ini-file as described in HESEL input. The data are stored in
the /params/structure_data and /params/structure_param groups described in
HESEL output. All data are appended to the para and data structures.

The data and para structures are initialized further in func_common_init

* func_common_init(&data, ¶)

The current time variables are stored in the para structure, and the data attribute
range is set from the domain limits stored in para. The function checks the para
attribute coordsys to determine the labels on the data attributes coordsys and
dim_label.

and settings defined in esel_settings.

* esel_settings(&data, ¶)

Derived parameters are stored in the para and data structures. This includes
grid spacings, output switches, datafile name (based on the para attributes co-
dename, shot_no and run_no), and computer specific attributes.

The MPI communicaters and parameters are set up in PH_MPI_Prepare

* PH_MPI_Prepare(&data,¶)

The geometry is specified for the MPI. Periodic boundaries are set and neigh-
bouring coordinates are defined for parallelization in the x-direction.

and fields are initialized in func_common_init_fields.

* func_common_init_fields(&data, ¶)

The solution fields are initialized with random noise. If no input files are pro-
vided the solution fields are assigned default initial profiles.

114 Chapter 6. Turbulence with synthetic diagnostics workflows

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

The probe configuration, for obtaining high temporally resolved data at probe po-
sitions, are loaded in the function read_probe_configuration.

* read_probe_configuration()

The probe configuration is obtained from the probe configuration file Probe
positions. A structure array of pype probe_t is created to store the probe infor-
mation.

Everything is now initialized and the system of differential equations is solved in
run_esel

* run_esel(&data, ¶)

The first half of the run_esel function finalizes the initialization; variables and
fields are allocated and some loaded from the data and para structures. The
logarithm of boundary values and fields is calculated for the solution fields.
The field background values are derived. The ion temperature ramp-up scheme
is initialized, and boundary values are applied.

The HDF5 output file is created and initial data stored in the para and data
structures are written to this.

The second half of the run_esel function consists of a loop which iterates
through the time range in steps of dt. The time loop has the following steps:

· Print datasets to the HDF5 output file

At specified time intervals the soulution fields and derived fields (w.g. pro-
files and integrated values) are written to the output file.

· The fields are testet for nan values

· The ion temperature is ramped up

If a ramp-up scheme is chosen for the ion temperature the increase in ion
edge pressure profile is executed at this stage, and the inner boundary con-
dition updated accordingly.

· The forward time step values of the (logarithmic) solution fields are calcu-
lated

In the order; generalized vorticity, density, electron temperature, ion tem-
perature. After each time step is calculated the step is made and dissipation
applied.

· The solution fields are derived

From their log values, and the vorticity and electrostatic potential is calcu-
lated from the generalized forticity.

· The higly resolved probe data is written

· Running avarages, turbulent energy, particle flux are calculated

And the energies are written to the output file

The program is terminated by an exit() command after the time loop termination
condition is reached.

6.1. HESEL Documentation 115

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

6.1.1.4 Running a HESEL simulation

HESEL is run in from the data directory, containing the input file (and optional data files) using mpirun.
In the data directory return

mpirun -np=<number_of_processors> <path_to_esel> -I <input_file_name>

Here <number_of_processors> is the number of processors to run the code and must be a
power of 2, <path_to_esel> is the path to the compiled HESEL code conventionally located in
C-HESEL/bin/esel.marconi.A3 for a MARCONI install, and <input_file_name> is the name of
the input file described in HESEL input.

6.1.1.5 HESEL output

For a run with an input file filename HESEL produces two output files; filename.erh and filename.h5.
The .erh file reviews the run settings and displays key parameters for the simulation. The full simulation
data output is stored in the hdf5 file.

The structure of the output datafile filename.h5 is

/data
/data/var0d
/data/var1d
/data/var1d/fixed-probes
/data/var2d
/data/var2d/grid
/data/var3d
/data/xanimation
/documentation
/equil
/params
/params/structure_data
/params/structure_param

The content of the groups are described in detail below.

• data

The data group stores the subgroups with the solution data and derived data that are of interest.
The data are grouped into the number of spatial dimensions of the data, e.g., the var1d group
contains data of one spatial dimension (e.g., temporal evolution of profiles). The data subgroups
are

– var0d This group contains derived data of zero spatial dimension.

116 Chapter 6. Turbulence with synthetic diagnostics workflows

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Variable Dimensions Description
SOL_density end_time/out_timeSpatially iend_time/out_timeegrated SOL density
SOL_energy_elecend_time/out_timeSpatially iend_time/out_timeegrated SOL electron

energy
SOL_energy_ionend_time/out_timeSpatially iend_time/out_timeegrated SOL ion energy
Te0 end_time/out_timeElectron reference temperature at LCFS
Ti0 end_time/out_timeIon reference temperature at LCFS
cflp end_time/out_time
cflr end_time/out_time
dEdt end_time/out_time
energy_elec end_time/out_timeSpatially iend_time/out_timeegrated electron energy

for the domain
energy_gkin end_time/out_time
energy_ion end_time/out_timeSpatially iend_time/out_timeegrated ion energy for

the domain
energy_kin end_time/out_time
energy_kin_0 end_time/out_time
energy_kin_f end_time/out_time
energy_out_P end_time/out_time
energy_out_p end_time/out_time
pe_curv_f end_time/out_time
pe_curv_pi end_time/out_time
pi_curv_f end_time/out_time
shear end_time/out_time
total_density end_time/out_timeSpatially iend_time/out_timeegrated density for the

domain
total_energy end_time/out_timeSpatially integrated total energy for the domain

– var1d This group contains derived data of one spatial dimension.

Variable Dimensions Description
CLSOED field line Nx Array with 1 in edge region, 0 in SOL region
Density-Prof end_time/(out_time*otmult) x Nx Low temporally resolved density profile
Density-inst end_time/out_time x Nx High temporally resolved density profile
Diff-Ion-Flux-Tgrad(n)-inst end_time/out_time x Nx Ti*grad(n) profile
Diff-Ion-Flux-grad(P)-inst end_time/out_time x Nx grad(Pi) profile
Diff-Ion-Flux-ngrad(T)-inst end_time/out_time x Nx n*grad(Ti) profile
Diff-den-Flux-grad(n)-inst end_time/out_time x Nx grad(n) profile
Diff-ele-Flux-grad(p)-inst end_time/out_time x Nx grad(Pe) profile
Ele-Pres-Prof end_time/(out_time*otmult) x Nx Low temporally resolved electron pressure profile
Ele-Pres-inst end_time/out_time x Nx High temporally resolved electron pressure profile
Ele-Temp-Prof end_time/(out_time*otmult) x Nx Low temporally resolved electron temperature profile
Ele-Temp-inst end_time/out_time x Nx High temporally resolved electron temperature profile
Flux-P-tur end_time/(out_time*otmult) x Nx
Flux-P-tur-inst end_time/(out_time*otmult) x Nx
Flux-T-tur end_time/(out_time*otmult) x Nx
Flux-heat-P-tur end_time/(out_time*otmult) x Nx
Flux-heat-p-tur end_time/(out_time*otmult) x Nx
Flux-p-tur end_time/(out_time*otmult) x Nx
Flux-p-tur-inst end_time/(out_time*otmult) x Nx

Continued on next page

6.1. HESEL Documentation 117

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Table 6.2 – continued from previous page
Variable Dimensions Description
Flux-pres_tur end_time/(out_time*otmult) x Nx
Flux-t-tur end_time/(out_time*otmult) x Nx
Gen-Vort-Prof end_time/(out_time*otmult) x Nx Low temporally resolved generalized vorticity profile
Gen-Vort-inst end_time/out_time x Nx High temporally resolved generalized vorticity profile
Ion-Pres-Prof end_time/(out_time*otmult) x Nx Low temporally resolved ion pressure profile
Ion-Pres-inst end_time/out_time x Nx High temporally resolved ion pressure profile
Ion-Temp-Prof end_time/(out_time*otmult) x Nx Low temporally resolved ion temperature profile
Ion-Temp-inst end_time/out_time x Nx High temporally resolved ion temperature profile
OPEN field line Nx Array with 0 in edge region, 1 in SOL region
Pot-Prof end_time/(out_time*otmult) x Nx Low temporally resolved electrostatic potential profile
Pot-inst end_time/out_time x Nx High temporally resolved electrostatic potential profile
Pressure-stress1-inst end_time/out_time x Nx
Pressure-stress2-inst end_time/out_time x Nx
Pressure-stress3-inst end_time/out_time x Nx
Pressure-work1-inst end_time/out_time x Nx
Pressure-work2-inst end_time/out_time x Nx
Pressure-work3-inst end_time/out_time x Nx
Reynolds-stress-inst end_time/out_time x Nx
Reynolds-work-inst end_time/out_time x Nx
Tur-par-Flux end_time/(out_time*otmult) x Nx
Tur-par-Flux-inst end_time/out_time x Nx
fp_P Nx
fp_fluc Nx
fp_mean Nx
fp_n Nx
fp_p Nx
fp_w Nx
gf-inst end_time/out_time x Nx
mean_vp end_time/(out_time*otmult) x Nx
mean_w end_time/(out_time*otmult) x Nx
rcor Nx
sheath_profile end_time/(out_time*otmult) x Nx Redundant
visc_P end_time/(out_time*otmult) x Nx
visc_n end_time/(out_time*otmult) x Nx
visc_p end_time/(out_time*otmult) x Nx
visc_w end_time/(out_time*otmult) x Nx

* fixed-probes This group contains temporally higly resolved spatial data at probe pos-
tions. Below is given an example for probes with only one probe tip (TIP0). For
multiple probe tips the output data list expands accordingly.

118 Chapter 6. Turbulence with synthetic diagnostics workflows

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Variable Dimensions Description
TIP0_density end_time/10

x xmax
Density at probe position at very high temporal
resolution

TIP0_potential end_time/10
x xmax

Electrostatic potential at probe position at very
high temporal resolution

TIP0_temperature end_time/10
x xmax

Electron temperature at probe position at very
high temporal resolution

TIP0_temperature_iend_time/10
x xmax

Ion temperature at probe position at very high
temporal resolution

TIP0_velocity_poloidalend_time/10
x xmax

Poloidal velocity at probe position at very high
temporal resolution

TIP0_velocity_radialend_time/10
x xmax

Radial velocity at probe position at very high
temporal resolution

TIP0_vorticity end_time/10
x xmax

Vorticity at probe position at very high temporal
resolution

– var2d This group contains the solution data (Density, Gen_Vorticity, Ion_Pressure, Pres-
sure) and derived data of (mostly) two spatial dimensions.

Variable Dimensions Description
Density end_time/(out_time*otmult) x Nx x Ny Density
Gen_Potential end_time/(out_time*otmult) x Nx x Ny Generalized potential
Gen_Vorticity end_time/(out_time*otmult) x Nx x Ny Generalized vorticity
Ion_Pressure end_time/(out_time*otmult) x Nx x Ny Ion pressure
Ion_temp end_time/(out_time*otmult) x Nx x Ny Ion temperature
Magnetic Field (b_0) Nx Magnetic field
Potential end_time/(out_time*otmult) x Nx x Ny Electrostatic potential
Pressure end_time/(out_time*otmult) x Nx x Ny Electron pressure
Temperature end_time/(out_time*otmult) x Nx x Ny Electron temperature
Vorticity end_time/(out_time*otmult) x Nx x Ny Vorticity

* grid This group contains the two dimensional spatial grid.

Variable Dimensions Description
x Nx x Ny x-grid
y Nx x Ny y-grid

– var3d

Currently no data are stored in this group.

– xanimation This group contains the solution data (and the electric potential) at high spatial,
low temporal resolution, aimed for visual representation of the data.

Variable Dimensions Description
density end_time/out_time x

Nx/4 x Ny/4
High temporal, low spatial resolved density (for
animations)

elec-
tron_pressure

end_time/out_time x
Nx/4 x Ny/4

High temporal, low spatial resolved electron
pressure (for animations)

ion_pressure end_time/out_time x
Nx/4 x Ny/4

High temporal, low spatial resolved ion pressure
(for animations)

potential end_time/out_time x
Nx/4 x Ny/4

High temporal, low spatial resolved electrostatic
potential (for animations)

vorticity end_time/out_time x
Nx/4 x Ny/4

High temporal, low spatial resolved vorticity (for
animations)

6.1. HESEL Documentation 119

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• documentation

The documentation group contains two datafiles, which are merely copies of the input files.

Filename Description
myprobe.dat Copy of myprobe.dat datafile described in Probe positions.
run.ini Copy of input file described in HESEL input.

• equil

Currently no data are stored in this group.

• params

This group contains two subgroups with parameter data that are either defined in, or derived
directly from, the input file. These data are mainly for the purpose of restarting a simulation from
an existing HDF5 output file.

– structure_data

Variable Dimensions Description
cwd 1 Current working directory
desc 1 Redundant
dims0 1 Same as ny
dims1 1 Number of x gridpoints
dims2 1 Redundant
elements0 1 Same as ny
elements1 1 Same as nx
elements2 1 Redundant
lnx 1 Same as nx
lny 1 Same as ny
lnz 1 Redundant
maschine 1 Operating system
number 1 Redundant
nx 1 Number of x gridpoints per processor
ny 1 Number of y gridpoints
nz 1 Redundant
offx 1
offy 1
offz 1
range00 1 Lower y boundary [rhos]
range01 1 Upper y boundary [rhos]
range10 1 Lower x boundary [rhos]
range11 1 Upper x boundary [rhos]
range20 1 Redundant
range21 1 Redundant
rank 1 2 for 2D code (only option)

– structure_param

Variable Dimensions Description
A 1 Given in HESEL input
B0 1 Given in HESEL input
Lp 1 Given in HESEL input

Continued on next page

120 Chapter 6. Turbulence with synthetic diagnostics workflows

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Table 6.3 – continued from previous page
Variable Dimensions Description
Lpwall 1 Given in HESEL input
MP 1 Given in HESEL input
MP_NS 1 Given in HESEL input
MP_SR 1 Given in HESEL input
Mp 1
R0 1 Given in HESEL input
SOL 1 Given in HESEL input
Te0 1 Given in HESEL input
Ti0 1 Given in HESEL input
Z 1 Given in HESEL input
Zeff 1 Given in HESEL input
adv_P 1
adv_n 1
adv_p 1
adv_w 1
amp_random0 1 Given in HESEL input
amp_random1 1 Given in HESEL input
amp_random2 1 Given in HESEL input
amp_random3 1 Given in HESEL input
background 1 Given in HESEL input
background_n 1 Given in HESEL input
background_t 1 Given in HESEL input
background_time 1 Given in HESEL input
bdval00 1
bdval01 1
bdval10 1
bdval11 1
bdval20 1
bdval21 1
bdval30 1
bdval31 1
bdval40 1
bdval41 1
beta 1 Given in HESEL input
boundary0 1
boundary1 1
boundary2 1
boundary3 1
bprof 1 Given in HESEL input
con_P 1
con_p 1
coordsys 1 Given in HESEL input
cs 1 Ion sound speed [rhos w_ci]
damping_nt 1 Given in HESEL input
dissipation_nt 1 Given in HESEL input
dkx 1
dky 1

Continued on next page

6.1. HESEL Documentation 121

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Table 6.3 – continued from previous page
Variable Dimensions Description
dkz 1
drift_wave_Te 1 Given in HESEL input
drift_wave_term 1 Given in HESEL input
dt 1 Given in HESEL input
dx 1 x grid point spacing [rhos]
dy 1 y grid point spacing [rhos]
dz 1 Redundant
edge 1 Given in HESEL input
end_time 1 Given in HESEL input
energy 1
fixed_time 1
fp 1 Given in HESEL input
gamma 1 Given in HESEL input
gradB 1
hyper_factor 1 Given in HESEL input
init 1 Given in HESEL input
init_ds 1 Given in HESEL input
lamda 1
limiter 1
mean_dissipation 1
mean_flow 1
mean_flow_radial 1
mean_flow_time 1
mue_P 1
mue_P_fac 1 Given in HESEL input
mue_n 1
mue_n_fac 1 Given in HESEL input
mue_p 1
mue_p_coupling 1
mue_p_fac 1 Given in HESEL input
mue_t 1
mue_t_fac 1
mue_w 1
mue_w_fac 1 Given in HESEL input
ne0 1
nprof 1
offset 1
otmult 1 Given in HESEL input
out_time 1 Given in HESEL input
phiprof 1
q 1 Given in HESEL input
r0 1 Given in HESEL input
ramb_up 1 Given in HESEL input
ramb_up_time 1 Given in HESEL input
rho_e 1 Electron thermal gyro-radius [m]
rho_i 1 Ion thermal gyro-radius [m]
rho_s 1 Cold-ion hybrid thermal gyro-radius [m]

Continued on next page

122 Chapter 6. Turbulence with synthetic diagnostics workflows

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Table 6.3 – continued from previous page
Variable Dimensions Description
run_no 1 Given in HESEL input
sheath 1
shot_no 1 Given in HESEL input
sigma 1 Given in HESEL input
time 1
tprof 1
w_ce 1 Electron cyclotron frequency [s^-1]
w_ci 1 Ion cyclotron frequency [s^-1]
wall 1 Given in HESEL input
xmax 1 Given in HESEL input
xmin 1 Given in HESEL input
ymax 1 Given in HESEL input
ymin 1 Given in HESEL input

6.1.2 HESEL as an actor

In this part HESEL is build as a library. First ensure that you have access to the cpo_interface SVN
repository. In a browser load

https://gforge-next.eufus.eu/

and ask for a new password if you cannot login. If you do not have access contact ahnie@fysik.dtu.dk.
On the EUROfusion Gateway open a terminal, change directory to (suggested) your public folder.
Download the C-HESEL repository by following the guide in HESEL as stand-alone. In the C-HESEL
repository check out the branch called WPCD-workflow-dev

git checkout WPCD-workflow-dev

and make sure that the commit 40da0f4dcb9aa6063d500f6c4fa824071042b77e made on 23.6.2021 is
included. Now, in the C_HESEL directory return

cd FUTILS_version2.2/src
make -f Makefile.gateway clean
make -f Makefile.gateway
cd ../..
make clean
make esel
make libhesel

After that, and still in you public folder, return the following

svn co https://gforge-next.eufus.eu/svn/cpo_interface

to checkout the wrapper repository. Now enter the directory

cd cpo_interface/tags/3.31.0/ids

and edit the file Makefile.gateway. In this file you will find four lines that contain a reference to a path
belonging to the user g2ahnie. Those lines are line no. 11, 13, 20 and 23. Change the path in those lines
to that which points to the corresponding files in the C-HESEL repository in your public directory. Save
the edit, quit the editor and in the terminal return

6.1. HESEL Documentation 123

mailto:ahnie@fysik.dtu.dk

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

make -f Makefile.gateway clean
make -f Makefile.gateway libhesel

to make the HESEL library libheselwrapper.a.

6.1.3 HESEL in the KEPLER workflow

On the EUROfusion Gateway build the HESEL library as described in HESEL as an actor. Open a
terminal and return the following to load the required modules

module purge
module load cineca
module load imasenv/3.31.0/rc
module unload itm-hdf5 hdf5
module load itm-hdf5/1.8.17/intel/17.0/mpi
module switch kepler/2.5p5-3.1.1_3.31.0_rc
module switch imas-fc2k/4.13.0

If not installed already, install Kepler by returning

kepler_install <username>

where <username> is your usename for the Gateway and allow for the directory to be created if prompted
for this. After installing Kepler load it by

kepler_load <username>

A number of directories have to be moved to other partitions and replaced by symbolic links. In the
terminal return the following

cd ~
mkdir work (if it does not already exist)
mkdir work/KEPLEREXECUTION (if it does not already exist)
cd public
mv imasdb ../work/
ln -s ../work/imasdb imasdb
ln -s ../work/KEPLEREXECUTION KEPLEREXECUTION

And an IMAS database initiated

imasdbs -u <username>

In the terminal return

fc2k

This will open a new window to generate a Kepler actor.

124 Chapter 6. Turbulence with synthetic diagnostics workflows

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Kepler actor generator window

In the file menu click open and navigate to the file (most likely located in) pub-
lic/cpo_interface/tags/3.31.0/scripts/Actors/HESEL_1.0.0.xml and click open. In the tabs Environment,
Parameters, and Source, if applicable, change the paths that belong to the user g2ahnie to the corre-
sponding paths in your system. Click Generate to generate the actor from the wrapper that calls the
HESEL code.

In the terminal run KEPLER by returning

kepler

this will open a new window. In KEPLER open the HESEL actor that was just generated in file -> open
to load the workflow.

6.1. HESEL Documentation 125

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

HESEL workflow in KEPLER

In the first actor, START, constrols the workflow input. By double clicking the box a window pops up
which allows for the user to edit the workflow input parameters

Edit HESEL workflow input parameters

The input have the following descriptions

Variable Description
user_name Name of user from which experiment imas database are loaded
machine_name Short name of device
shot_number Machine shot number
input_run Input run number for HESEL realisation
output_run Output run number for HESEL
time Time at which experimental data are pulled

The second actor, MAP_EXP_DATA, maps the input profiles that HESEL will use as initial conditions
and reference profiles in the forcing region. If you double click the box the following editing window is
opened

Edit HESEL workflow data mapping parameters

The input have the following descriptions

126 Chapter 6. Turbulence with synthetic diagnostics workflows

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Variable Description
R_start Radial profile coordinate starting position
R_end Radial profile coordinate ending position
Z_start Longitudinal profile coordinate starting position
Z_end Longitudinal profile coordinate ending position
Npoints Grid resolution
Visualize_data Whether to visualize the profile data or not

Note that if yes is selected for Visualize_data, the data will be displayed as below and the workflow
stops.

Example of resulting window when Visualize_data is selected

To run the workflow beyond the MAP_EXP_DATA actor the value for Visualize_data has to be no when
the workflow is initiated.

The third, and last editable, actor is the HESEL actor. Right-click this box and select Open Actor to edit
the submission script and non-predetermined HESEL input parameters. The following window appears
when the actor is opened.

Workflow within the HESEL actor

The only relevant actor within this sub-workflow is that called HESEL. When this box is double clicked
the following window appears

6.1. HESEL Documentation 127

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

The HESEL actor where submission data can be edited

The batch file appears in this window and it is possible to adjust this to alter submission data. If the
button Edit Code Parameters is clicked the following option to edit the (mainly numerical) HESEL
input parameters that cannot be determined from experimental data appears

The non-predetermined HESEL input parameters can be edited

Where the descriptions of the parameters is given in HESEL input.

When the input parameters for all actors of the workflow are set the HESEL EDGE TURBULENCE
WORKFLOW is initated by pressing the green triangle button in the outermost workflow.

The output data are stored in the ~/work/imasdb folder according to the structure described in HESEL
output.

128 Chapter 6. Turbulence with synthetic diagnostics workflows

CHAPTER

SEVEN

CODES

7.1 IMASviz

The IMASViz code is used for IMAS visualisation.

7.2 IMASgo!

IMASgo! is an OMFIT module for the mapping of experimental data and machine descriptions into
an IMAS database. IMASgo! builds upon the OMFITprofiles, KineticEFIT and TRANSP modules.
Any tokamak for which the above modules have been configured can use IMASgo! to map its data
into IMAS. At present IMASgo! can write IDSs on the ITER server and on the WPCD Gateway. An
account on one of these servers is necessary to complete the workflow in IMASgo! IMASgo! workflow
starts with reading the equilibrium from the Tokamak database; kinetic measurements such as Thomson
Scattering, ECE, Charge Exchange will be then mapped on the equilibrium and fitted with a variety of
available methods. The last step is to export the experimental data, the fitted profiles and the machine
description of NBI and RF antennas in the IMAS database. Below are the step by step instructions
on how to launch the IMASgo! module and perform the mapping for JET. Some of the files used by
IMASgo! for the mapping of the NBI / ICRH machine data are only accessible from inside the JET
network hence this example has been run on Heimdall

On an Heimdall terminal type

$ module purge
$ module load omfit
$ omfit

The OMFIT framework will be launched Click on continue to OMFIT. From the File drop menu select
Import module ...

1. Select the IMASgo module from the list of available modules.

2. Double click on IMASgo. The module will be loaded in OMFIT and ready to be launched.

3. Double click on IMASgo in the View1 list of loaded modules.

4. A GUI will be displayed. In this case the device choses is JET and the pulse and Times to be
mapped appear in the next two fields at the top of the GUI.

5. From the drop menu Operation chose equilibrium from PPF It is possible to choose amongst
different EFIT++ option: run EFIT++, load the chain 1 magnetics only EFIT, load the pressure
constraint equilibrium in the Equilibrium Source DDA drop menu and selecting the PPF UID and
sequence number.

129

https://wpcd-workflows.github.io/IMASviz/index.html

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

6. Click on Generate equilibrium.

7. Once the step is completed click on the tab Profiles and select 1D fits from the drop menu Work-
flow.

8. Click the Fetch tab and select which diagnostics you would like to upload data from.

9. Click on the fetch and map all data buttons.

10. In the Slice tab select the time averaging and click slice all data.

11. In the select tab you can visualise the sliced profiles and deselect profiles in advance of the the
fitting step. Once the selected profiles are ok move to the fit tab and select the fitting method for
all the data that need fitting. Chose the default fitting parameters or modify them. Then click on
fit 1D and plot.

12. Once all the data are fitted move to the postfit tab and calculate the derived quantities.

13. The postfit tab allows also for manipulation of the profile in order to meet certain constraints e.g.
separatrix values. The plot tab allows to have a final look at the data before they are saved in the
database.

14. Click on the Machine tab and click on Generate Machine Description. This step will provide the
data for the NBI and ICRH IDSs.

15. The final step is to export the data.

16. Click on the Export tab and on Generate OMAS. This will save the data in memory into the OMAS
datastructure.

17. Then set up the server, shot number, run number and hit save ODS to IMAS. An entry will be
created in the user’s IMAS database on the Gateway for JET/92436/107 as well as the same entry
for the ITM database (CPOs).

Two videos showing an example of use of IMASgo! to fetch and map data of JET pulse 92054 (NBI
only) and run ETS with the same data are available on YouTube at

https://www.youtube.com/watch?v=8bPSjEy2dNk&t=8s

https://www.youtube.com/watch?v=dv427_XOFf4&t=287s

7.3 How to turn a C++ code into a Kepler actor

This document is based on material provided by Yann Frauel and describes how to make your C++ code
EU-IM compliant and how to turn it into a Kepler actor.

7.3.1 Adapt your C++ function

You must include the header file UALClasses.h:

#include "UALClasses.h"

The function arguments that are arrays or strings must be declared as pointers, as usual. All other
arguments must be passed by reference (i.e. they must be declared with an ampersand):

void mycppfunction(double * vector, char * string, int & scalar)

130 Chapter 7. Codes

https://www.youtube.com/watch?v=8bPSjEy2dNk&t=8s
https://www.youtube.com/watch?v=dv427_XOFf4&t=287s

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

The function arguments that are CPOs must be declared with types ItmNs::Itm::cpo_type or
ItmNs::Itm::cpo_typeArray. The first form is for time-independent CPOs or a single slice of a time-
dependent CPO. The latter is for a complete time-dependent CPO. Note that in all cases, the CPO is
considered as a single object, not an array, so it must be passed by reference as mentioned above:

void mycppfunction(
ItmNs::Itm::limiter & lim,
ItmNs::Itm::coreimpur & cor,
ItmNs::Itm::ironmodelArray & iron)

The syntax is identical for input and output arguments. For output CPOs, do not forget to use the usual
methods to assign strings and allocate arrays:

lim.datainfo.dataprovider.assign("test_limiter");
iron.array.resize(3);
iron.array(j).desc_iron.geom_iron.npoints.resize(3);

Otherwise, the content of CPOs is accessed as usual:

cout << lim.datainfo.dataprovider << endl;
cout << iron.array(j).desc_iron.geom_iron.npoints(i);

7.3.2 How to use code parameters

The code parameters are passed as the last argument with ItmNs::codeparam_t& type:

void mycppfunction(..., ItmNs::codeparam_t & codeparam)

Each field of the param structure is a vector of 132-byte strings, not necessarily terminated by 0-
character! (This does not follow C/C++ standards and should be changed in the future.)

7.3.3 Compile your function as a library

You need to include the header directories for the UAL and Blitz:

-I$(UAL)/include -I$(UAL)/lowlevel -I$(UAL)/cppinterface/ -I/afs/efda-
itm.eu/gf/project/switm/blitz/blitz-0.9/include/

Same for linking:

-L$(UAL)/lib -lUALCPPInterface -lUALLowLevel -L/afs/efda-
itm.eu/gf/project/switm/blitz/blitz-0.9/lib -lblitz

Additionally, you must compile with the -fPIC option.

7.3.4 Full example

We want to generate an actor that has three different types of actors as inputs and three different types
of actors as output. Additionally, we have an integer as input/output, a vector of doubles as output and a
string as output. We also want to use code parameters. Content of mycppfunction.cpp:

#include "UALClasses.h"

typedef struct {
char **parameters;
char **default_param;

7.3. How to turn a C++ code into a Kepler actor 131

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

char **schema;
} param;

void mycppfunction(
ItmNs::Itm::summary SUM,
EU-IMNS::EU-IM::ANTENNAS & ANT,
EU-IMNS::EU-IM::EQUILIBRIUMARRAY & EQ,
INT & X,
EU-IMNS::EU-IM::LIMITER & LIM,
EU-IMNS::EU-IM::COREIMPUR & COR,
EU-IMNS::EU-IM::IRONMODELARRAY & IRON,
DOUBLE * Y,
CHAR * STR,

PARAM & CODEPARAM)
{

/* DISPLAY FIRST LINE OF PARAMETERS */
COUT << codeparam.parameters[0] << endl;
cout << codeparam.default_param[0] << endl;
cout << codeparam.schema[0] << endl;
/* display content of inputs */
cout << "x=" << x << endl;
cout << sum.time << endl;
cout << sum.datainfo.dataprovider << endl;
cout << ant.datainfo.dataprovider << endl;
cout << eq.array(0).datainfo.dataprovider << endl;
for (int k=0; k<3; k++) {

for (int i=0; i<4; i++) {
cout << eq.array(k).profiles_1d.psi(i)<< " ";

}
cout << endl;

}
/* fill limiter CPO */
lim.datainfo.dataprovider.assign("test_limiter");
lim.position.r.resize(5); // allocate vector
for (int i=0; i<5; i++) {

lim.position.r(i)=(i+1);
}
/* fill coreimpur CPO */
cor.datainfo.dataprovider.assign("test_coreimpur");
cor.flag.resize(3); // allocate vector
for (int i=0; i<3; i++) {

cor.flag(i)=(i+1)*10;
}
cor.time=0; // don't forget to fill time for time-dependent CPOs
/* fill ironmodel CPO */
iron.array.resize(3); // allocate slices
for (int j=0; j<3; j++) {

char s[255];
sprintf(s,"test_ironmodel%d",j);
iron.array(j).datainfo.dataprovider.assign(s); // allocate vector
iron.array(j).desc_iron.geom_iron.npoints.resize(3);
for (int i=0; i<3; i++) {

iron.array(j).desc_iron.geom_iron.npoints(i)=j*i;
}
iron.array(j).time=j; // fill time for time-dependent CPOs

}
/* assign value to non CPO outputs */
x=5;
for (int i=0; i<10; i++) {

y[i]=i;
}
strcpy(str,"This is a test string");

}

Content of Makefile:

CXXFLAGS=-g -fPIC -I$(UAL)/include -I$(UAL)/lowlevel -I$(UAL)/cppinterface/
-I$SWEU-IMDIR/blitz/blitz-0.9/include/
LDFLAGS=-L$(UAL)/lib -lUALCPPInterface -lUALLowLevel -L/afs/efda-
itm.eu/gf/project/switm/blitz/blitz-0.9/lib -lblitz

132 Chapter 7. Codes

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

libmycppfunction.a: mycppfunction.o
ar -rvs libmycppfunction.a mycppfunction.o

mycppfunction.o: mycppfunction.cpp
clean:

rm mycppfunction.o libmycppfunction.a

7.3.5 How to fill the FC2K window

First tab (Argument):

• set number of input and output arguments (combined)

• select type of arguments from drop-down menu

• tick if argument is a single time slice

• tick if argument is array (not for pointers)

• if necessary define size of arrays

• tick if argument is input argument

• tick if argument is output argument (multiple ticks possible)

The fields Kepler, Ptolemy, and UAL are automatically filled with the values which you set by running
the EU-IMv1 script.

Second tab (HasReturn):

• specify return parameters (type, array, size)

Third tab (HasParameters):

• tick if subroutine uses code specific parameters

• specify (or browse for) XML code parameter input file

• specify (or browse for) XML default code parameter file

• specify (or browse for) W3C XML schema file (XSD)

For information on code specific parameters, please see How to handle code specific parameters.

Fourth tab (Source):

• specify programming language of source code

• select appropriate compiler

• tick Parallel MPI if code module is using MPI

• tick Batch if code module shall be run in batch mode rather than interactively when running Kepler
workflows

• specify (or browse for) library file containing the code module

• specify (or browse for) other libraries required by the code module

7.3. How to turn a C++ code into a Kepler actor 133

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

134 Chapter 7. Codes

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

7.3. How to turn a C++ code into a Kepler actor 135

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

136 Chapter 7. Codes

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

7.3. How to turn a C++ code into a Kepler actor 137

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

7.4 Plasma equilibrium and MHD list of codes

The following list lists the codes and modules which are part of WPCD tasks and their responsible
officers.

7.4.1 Free boundary equilibrium codes

• CEDRES++, S. Brémond, CEA

• CLISTE, P. Mc Carthy, DCU

• CREATE-NL, M. Mattei, ENEA Frascati

• EFIT++, L. Appel, CCFE

• EQUAL, W. Zwingmann, EC

• EQUINOX, B. Faugeras, CEA

• FIXFREE, E. Giovannozzi, ENEA Frascati

7.4.2 Fixed boundary equilibrium codes

• CAXE, S. Medvedev, EPFL

• CHEASE, O. Sauter, EPFL

• HELENA, C. Konz, IPP

7.4.3 Linear MHD stability codes

• KINX, S. Medvedev, EPFL

• ILSA, C. Konz, IPP

• MARS, G. Vlad, ENEA Frascati

• MARS-F, D. Yadykin, Chalmers

7.4.4 Sawtooth Crash Modules

• SAWTEETH, O. Sauter, CRPP

7.4.5 ELM Modules

7.4.6 NTM Modules

• NTMETS, S. Nowak

138 Chapter 7. Codes

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

7.4.7 Numerical Tools

• PROGEN, C. Konz, IPP

• JALPHA, C. Konz, IPP

7.5 Heating, current drive (H&CD) and fast particles list of codes

The following list lists the codes and modules which are part of WPCD tasks and their responsible
officers.

7.5.1 Electron heating codes

7.5.1.1 EC wave codes

• TORAY-FOM, E. Westerhof, FOM

• TORBEAM, E. Poli, IPP-Garching

• GRAY, L. Figini, ENEA-CNR

• TRAVIS, N. B. Marushchenko, IPP-Greifswald

7.5.1.2 Combined electron Fokker-Planck codes

• RELAX, E. Westerhof, FOM

7.5.1.3 Wave codes for ion cyclotron heating

• TORIC, R. Bilato, IPP-Garching

• EVE, R. Dumont, CEA (Cadarache)

• LION, O. Sauter, CRPP

• Cyrano, E. Lerche, ERM/KMS

• ICCOUP, T. Johnson, VR

7.5.1.4 Fokker-Planck codes for ion cyclotron heating

• RFOF, T. Johnson, VR

• StixRedist, E. Lerche and D. Van Eester

7.5.1.5 NBI sources for Fokker-Planck codes

• BBNBI (Beamlet-based NBI module of ASCOT), J. Varje, TEKES

• NEMO, M. Schneider, CEA (Cadarache)

7.5. Heating, current drive (H&CD) and fast particles list of codes 139

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

7.5.1.6 Nuclear sources (input for Fokker-Planck codes)

• Nuclearsim, T.Johnson, VR

• AFSI Ascot Fusion Source Integrator, J. Varje, Aalto

7.5.1.7 NBI Fokker-Planck codes

• RISK, M. Schneider, CEA (ITER)

• NBISIM, T. Johnson, VR

7.5.1.8 Runaway electrons

• Runaway Indicator (Runin), G. Pokol, et al (BME): Runin has been developed to provide an
indication for when to expect runaway tail formation. The source code is stored in the OSREP
project <https://github.com/osrep>.

• Runaway Fluid (Runafluid), G. Pokol, et al (BME): Porpose of Runafluid is to provide a non-
inductive current due to runaway electrons using computationaly cheap analytical estimates of
ruraway electron growth rates and transport. The source code is stored in the OSREP project
<https://github.com/osrep>.

7.5.1.9 Advanced codes

(The following codes include either the synergy between IC and NBI heating, or include both wave field
and Fokker-Planck solver)

• ASCOT, S. Sipila and J. Varje, Aalto

• SPOT, M. Schneider, CEA (Cadarache)

7.5.1.10 Codes for fast ion-MHD interactions

• LIGKA, P. Lauber, IPP-Garching

• MARS, G. Vlad, ENEA-Frascati

• HYMAGYC, G. Vlad, ENEA-Frascati

• HMGC, C. Di Troia, ENEA-Frascati

• LEMAN, W.A. Cooper, EPFL-CRPP

7.6 Transport list of codes

• ASPOEL

• BIT1

• CARRE

• COS

140 Chapter 7. Codes

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• EIRENE

• EIRENE2

• EMC3-EIRENE

• ERO

• ETS

• METIS4EU-IM

• SOLPS

• SOLPS6

7.6. Transport list of codes 141

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

142 Chapter 7. Codes

CHAPTER

EIGHT

CONVENTIONS

8.1 Standard Machine Names

The following machine names are suggested:

• aug

• ftu

• iter

• jet

• mast

• tcv

• tore_supra

• west

8.2 Physics Conventions

The EU-IM-TF has agreed on a variety of conventions to facilitate the integration of the code mod-
ules across EFDA. In the following the most important conventions are explained in detail to remove
confusion and avoid ambiguity. For more physical detail than that represented here see F Hinton and
R Hazeltine, Rev Mod Phys 48 (1976) 239-308, or R Hazeltine and J Meiss, Plasma Confinement
(Addison-Wesley, 1992).

8.2.1 Coordinate System

There are generally two choices for defining a right-handed coordinate system in a toroidal geometry
with the following coordinates:

• major radius R

• vertical heights Z

• toroidal angle 𝜑

Remaining consistent with ITER, the EU-IM-TF has chosen to adopt the right-handed system

(𝑅,𝜑, 𝑍)

143

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

i.e. R is to the right, Z is upwards, and 𝜑 points into the plane on the right-hand side of the torus (i.e.
mathematically positive). Looking from above, the toroidal angle is counter-clockwise, i.e. mathemati-
cally positive.

The following figures demonstrate the orientation of the toroidal angle 𝜑 and the poloidal angle 𝜃:

source:

http://www-fusion.ciemat.es/fusionwiki/index.php/Toroidal_coordinates

http://en.wikipedia.org/wiki/Toroidal_and_poloidal

8.2.2 Representation of the Magnetic Field and Current

Generally, the magnetic field is described in terms of two scalar fields as it is divergence free. If the
field is also axisymmetric then MHD equilibrium demands these are functions of each other. In the

144 Chapter 8. Conventions

http://www-fusion.ciemat.es/fusionwiki/index.php/Toroidal_coordinates
http://en.wikipedia.org/wiki/Toroidal_and_poloidal

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

EU-IM-TF the relevant quantities are 𝐹dia and Ψ and the representation is

B = 𝐹dia∇𝜑+ (2𝜋)−1∇Ψ ×∇𝜑

where the factor of 2𝜋 is to have Ψ one and the same with the poloidal flux in Webers (see below).

The current given by Ampere’s law is

𝜇0J = ∇𝐹dia ×∇𝜑− (2𝜋)−1(𝑅2∇ ·𝑅−2∇Ψ)∇𝜑

The respective covariant toroidal components are useful forms:

𝐵𝜑 = 𝐹dia 𝜇0𝐽𝜑 = −(2𝜋)−1(𝑅2∇ ·𝑅−2∇Ψ)

where the latter is often expressed in terms of the “delta-star” operator, ∆* = 𝑅2∇ · 𝑅−2∇. These are
not the toroidal field and current but the toroidal field and current multiplied by𝑅 respectively. The total
plasma current 𝐼𝑝 is the integral of 𝐽𝜑/𝑅 over the poloidal cross section (usually, but not always, over
the closed flux surface region only).

8.2.3 Poloidal and Toroidal Fluxes

The toroidal flux Φ is the integral of 𝐵𝜑/𝑅 over the region enclosed by the flux surface. Due to axisym-
metry it is also a volume integral

Φ =

∮︁
𝑑3𝑉 (2𝜋𝑅2)−1𝐹dia

All volume integrals are understood as integration over the region enclosed by the flux surface. They are
therefore flux quantities (pure functions of Ψ). The units of Φ are volt-seconds, or Webers (Wb).

The poloidal flux is Ψ due to the construction of B. The factor of 2𝜋 ensures this is not Wb per
radian (the more usual quantity 𝜓 used as a covariant toroidal component of the magnetic potential is
in Wb/radian; the factor of 2𝜋 results from integration over one angular circuit). Note that the poloidal
flux Ψ and its equivalent per radian 𝜓 are often used equivalently in the literature.

8.2.4 Safety Factor

The magnetic pitch parameter is defined in terms of the flux components:

𝑞 ≡ 𝑑Φ𝑑Ψ

which is a flux quantity. This definition is the same as saying the magnetic pitch is given as the number
of toroidal cycle a magnetic field line traverses per unit poloidal cycle. It is also called the local safety
factor for MHD stability reasons (here, “local” means local to a given flux surface). Equivalent relations
often seen depend on the definition of coordinates. These are given for straight field line coordinates,
below.

8.2.5 Signs

With the above definition of the toroidal coordinate system and the magnetic field, the following sign
relationships ensue (where increasing and decreasing refer to going from the magnetic axis to the sepa-
ratrix on the outboard midplane):

8.2. Physics Conventions 145

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Table 8.1: Sign Relations

𝐵𝑡𝑜𝑟 𝐼𝑝 Ψ Φ safety factor 𝑞
positive positive decreasing increasing negative
positive negative increasing increasing positive
negative positive decreasing decreasing positive
negative negative increasing decreasing negative

8.2.6 COCOS - toroidal coordinate conventions

16 different fundamental coordinate conventions (COCOS) has been identified for toroidal systems.
These are described by O. Sauter and S. Yu. Medvedev, Computer Phys. Commun. 184 (2013) 293.

The current EU-IM convention (described above) is number 13, while the ITER convention is 11.

8.2.6.1 Equilibrium COCOS transformation library and actor

A Fortran library has been developed for transforming the equilibrium cpo between different COCOS.
The source is found in

https://gforge6.eufus.eu/svn/numerical_tools/tags/COCOStransform_v1_1

and the actor is

https://gforge6.eufus.eu/svn/kepleractors/tags/4.09a/imp12/COCOStransformequil.tar

(also available from: ~sauter/public/ACTORS/4.09a)

Inputs:

• Equilibrium_in : input cpo

• COCOS_in : COCOS of the input equilibrium (if the COCOS is not stored in Equilibrium_in)

• COCOS_out : Requested COCOS for the Equilibrium_out

• Ipsign_out : Requested sign for output Ip; -9 if just wants IP_in transformed to new equilibrium,
+1 or -1 if a specific sign in output is desired

• B0sign_out : Requested sign for output B0

Output:

• Equilibrium_out : Output cpo

8.2.7 The Flux Surface Average

In general, the flux surface average is the operation which annihilates the magnetic derivative B · ∇ and
acts as an identity operator on any flux quantity. It can be proved that this results in a volume derivative
of a volume integral (alternatively one starts with the latter property and then proves the former, as the
above Ciemat reference does). The flux surface average of a scalar and divergence of a vector are given
by

⟨𝐺⟩ =
𝜕

𝜕𝑉

∮︁
𝑑3𝑉 𝐺 ⟨∇ ·G⟩ =

𝜕

𝜕𝑉
⟨G · ∇𝑉 ⟩

146 Chapter 8. Conventions

http://www.sciencedirect.com/science/article/pii/S0010465512002962

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

where G · ∇𝑉 is the contravariant volume component of the vector G. It follows that the flux surface
average is an angle average weighted by the volume element

√
𝑔

⟨𝐺⟩ =

∮︁
𝑑𝜑

∮︁
𝑑𝜃

√
𝑔𝐺

⧸︂∮︁
𝑑𝜑

∮︁
𝑑𝜃

√
𝑔

for any choice of toroidal and poloidal angle as well as radial coordinates, where 𝑔 is the determinant of
the covariant metric tensor components in those coordinates. Note in general 𝐺 is not an axisymmetric
quantity so the integration is actually over both angles.

For more detail see the above references.

8.2.8 The Toroidal Flux Radius as the Radial Coordinate

The EU-IM-TF has decided to use the toroidal flux radius 𝜌tor defined by

Φ = 𝜋𝐵0𝜌
2
tor

where 𝐵0 is the reference (vacuum) magnetic field value. Note that 𝜌tor is a positive quantity which has
units of meters. For several applications the volume radius 𝜌vol is also used. It is a normalised radius
going from 0 to 1 and is defined as

𝑉 = 𝑉LCFS𝜌
2
vol

where LCFS refers to the last closed flux surface. Both should be defined in the equilibrium CPO (as
well as volume ≡ 𝑉 itself).

8.2.9 Toroidal and Parallel Current

These are not equivalent, despite the often-seen experimental practice of considering them so. The
toroidal current given in Amperes depends on some convention applied to 𝐽𝜑 given above, which is not
a flux quantity. The EU-IM-TF has decided on this definition of the toroidal current as a flux quantity:

jphi ≡ ⟨𝐽𝜑⟩/⟨1/𝑅⟩

This uses the contravariant toroidal component of J which is a pure divergence

𝐽𝜑 = J · ∇𝜑 = 𝐽𝜑/𝑅
2 = −∇ · (2𝜋𝜇0𝑅

2)−1∇Ψ

Hence the flux surface average invokes the often-used quantity ⟨𝑔𝜌𝜌/𝑅2⟩ in the form

⟨𝐽𝜑⟩ = −(2𝜋𝜇0)
−1 1

𝑉 ′
𝜌

𝜕

𝜕𝜌
𝑉 ′
𝜌⟨𝑔𝜌𝜌/𝑅2⟩𝜕Ψ

𝜕𝜌

Here, 𝑉 ′
𝜌 ≡ 𝜕𝑉/𝜕𝜌tor explicitly using the toroidal flux radius as the radial coordinate.

The parallel current is different from this due to the finiteness of the poloidal current and magnetic field.
Generally the correction is 𝑂(𝜖2/𝑞2) which is usually a few percent (but not in a spherical tokamak).
Using the representations for B and J given above we find

J ·B = −(2𝜋𝜇0)
−1 𝐹 2

dia∇ · 1

𝐹dia𝑅2
∇Ψ

Since 𝐹dia is a flux quantity the flux surface average behaves as for jphi and we use a factor of 𝐵0 to
provide the correct units, yielding

jparallel ≡ −(2𝜋𝜇0𝐵0)
−1𝐹

2
dia

𝑉 ′
𝜌

𝜕

𝜕𝜌

𝑉 ′
𝜌

𝐹dia
⟨𝑔𝜌𝜌/𝑅2⟩𝜕Ψ

𝜕𝜌

This form has been chosen due to the natural use of the flux surface average ⟨J · B⟩ in neoclassical
theory and the magnetic flux diffusion equation (see the Hinton and Hazeltine reference above).

8.2. Physics Conventions 147

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

8.2.10 Straight Field Line Coordinates

A variety of modules in the EU-IM-TF use straight field line coordinate systems to represent the closed
flux surface region. To guarantee consistency with the definition of the poloidal flux and the magnetic
field representation given above, a standard definition of the coordinate volume element follows. This
is the same sense as the usage of the term “Jacobian” in the CPOs (note many papers use the inverse
volume element as the “Jacobian” by contrast). Here, “straight field line coordinates” refers to the use
of the right-handed coordinate system (Ψ, 𝜃, 𝜁) with the poloidal flux Ψ, the straight field line angle 𝜃,
and the toroidal angle 𝜁 = −𝜑. Therefore, 𝜃 has the same orientation as the poloidal angle 𝜃 in toroidal
coordinates, while the toroidal angle 𝜁 is in the opposite direction of 𝜑. This is standard usage generally
in terms of “flux coordinates” (see Hazeltine and Meiss, above).

Note here that while the toroidal angle is the geometric one in the orientation sense of flux coordinates,
the poloidal angle is not geometric. This results from the demand that the field lines be straight in
the coordinate plane (𝜃, 𝜁). The definition of this property is given by the specification of the ratio of
contravariant components of the magnetic field as a flux quantity, which is one and the same with the
pitch parameter (“local safety factor”):

𝑞 = 𝑞(Ψ) = −𝐵𝜁/𝐵𝜃 = 𝐵𝜑/𝐵𝜃

where the minus sign appears by consistency with the primary definition in terms of the flux components
as given above. This represents a magnetic differential equation for the poloidal angle:

𝐵𝜃 = 𝐵𝜑/𝑞 = 𝐹dia/𝑞𝑅
2

Due to the choice of “natural” coordinates (with Ψ, not 𝜌tor) this relation is close to the definition of the
volume element

√
𝑔 and, equivalently, the Jacobian 𝐽

𝐽 ≡ √
𝑔 𝐽−1 = ∇Ψ · ∇𝜃 ×∇𝜁 = ∇Ψ ×∇𝜑 · ∇𝜃

Note the ordering of ∇Ψ and ∇𝜑.

The components of the magnetic field are then

𝐵𝜃 = B · ∇𝜃 = (2𝜋)−1∇Ψ ×∇𝜑 · ∇𝜃 = (2𝜋𝐽)−1

𝐵𝜁 = B · ∇𝜁 = −𝐵𝜑/𝑅
2 = −𝐹dia/𝑅

2

𝐵Ψ = B · ∇Ψ = 0

With these relations the following relationship between the Jacobian and pitch parameter (“local safety
factor”) holds

𝐽 = (2𝜋)−1𝑞𝑅2/𝐹dia

This is the quantity labelled jacobian in the equilibrium CPO.

8.2.11 Plasma Betas

Out of the many definitions of plasma betas, the EU-IM has agreed to adhere to the following definitions:
Following Wesson (p. 116), the poloidal beta is defined as an integral over the poloidal cross section

𝛽p =
2𝜇0
𝐵2

a

∫︀
𝐴 𝑝dS∫︀
𝐴 dS

148 Chapter 8. Conventions

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

where 𝐴 = 𝐴(Ψ) is the poloidal cross section enclosed by the flux surface Ψ, 𝐵a = 𝜇0𝐼
𝑙 is the flux

surface averaged poloidal magnetic field, 𝐼 = 𝐼(Ψ) the toroidal plasma current inside the flux surface
Ψ and 𝑙 =

∮︀
dl the length of the poloidal perimeter of flux surface Ψ. This definition yields a one-

dimensional profile 𝛽p = 𝛽p(Ψ) stored in profiles_1d%beta_pol in the equilibrium CPO. The overall
poloidal beta 𝛽p(Ψ = Ψbd) is stored in global_param%beta_pol.

The toroidal beta is defined as

𝛽tor =
2𝜇0
𝐵2

0

∫︀
Ω 𝑝dV∫︀
Ω dV

with 𝐵0 the vacuum magnetic field as stored in global_param%toroid_field%b0. The integral is carried
out over the entire plasma volume and the result stored in global_param%beta_tor.

The normalized plasma beta is defined as

𝛽N = 100
𝑎𝐵0

10−6𝐼p
𝛽tor

with 𝐼p the total plasma current (following Y.-S. Na et al., PPCF 44 (2002), 1285) and a is the minor
radius. It is stored in global_param%beta_normal.

8.2.12 Internal Inductance

The definition of the internal inductance follows J.A. Romero et al., NF 50 (2010), 115002. The mag-
netic energy contained inside the flux surface Ψ is

𝑊mag =
1

2𝜇0

∫︁
Ω
𝐵2

pdV

where 𝐵p is the poloidal component of the magnetic field. The (unnormalized) internal inductance is
then defined as

𝐿i =
2𝑊mag

𝐼2

where 𝐼 = 𝐼(Ψ) is the toroidal plasma current enclosed by the flux surface Ψ. The normalized internal
inductance, as stored in profiles_1d%li is defined as

𝑙i =
2𝐿i

𝜇0�̄�

with the surface averaged major radius

𝑏𝑎𝑟𝑅 =

∫︀
𝐴𝑅dS∫︀
𝐴 dS

=
𝑉 (Ψ)

2𝜋𝐴(Ψ)

The overall internal inductance 𝑙i(Ψ = Ψbd) is stored in global_param%li.

8.2.13 Poloidal Angle Dimension in Equilibrium CPO

The following entries in the equilibrium CPO are defined along the poloidal dimension (as dim2 in the
case of a flux surface equilibrium, i.e. radial coordinate psi in dim1 and poloidal angle in dim2):

8.2. Physics Conventions 149

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

coord_sys%jacobian(:,:)
coord_sys%g_11(:,:)
coord_sys%g_12(:,:)
coord_sys%g_13(:,:)
coord_sys%g_22(:,:)
coord_sys%g_23(:,:)
coord_sys%g_33(:,:)
profiles_2d%position
profiles_2d%grid
profiles_2d%psi_grid(:,:)
profiles_2d%jphi_grid(:,:)
profiles_2d%jpar_grid(:,:)
profiles_2d%br(:,:)
profiles_2d%bz(:,:)
profiles_2d%bphi(:,:)

The EU-IM-TF has decided not to repeat the first poloidal point (with poloidal angle 𝜃 = 0, which is
identical to 𝜃 = 2𝜋. This option was chosen to facilitate Fourier transforms along the poloidal direction.
To that purpose it is required that the dimension dim2 be equidistant in the poloidal angle 𝜃 (going from
𝜃 = 0 to 𝜃 = (𝑛𝑑𝑖𝑚2 − 1)/𝑛𝑑𝑖𝑚2 * 2𝜋 where ndim2 is the number of poloidal grid points), whatever
the choice of this angle is.

8.3 Numerical and computational conventions

8.3.1 Standardized Variable Types

To ensure that physics modules produce identical results on various computer architectures and to avoid
issues with double precision versus single precision interfaces, the EU-IM-TF has agreed on a set of
standardized variable types. It is recommended that these types be used throughout all EU-IM modules,
but at least for the interface definitions. The Fortran90 module defining the type standards itm_types.f90
is hosted by the project itmshared . To check out the relevant files please do

svn checkout https://gforge6.eufus.eu/svn/itmshared/trunk/src/itm_types target_dir

For Fortran90, the following standard types have been defined

INTEGER, PARAMETER :: EU-IM_I1 = SELECTED_INT_KIND (2) ! Integer*1
INTEGER, PARAMETER :: EU-IM_I2 = SELECTED_INT_KIND (4) ! Integer*2
INTEGER, PARAMETER :: EU-IM_I4 = SELECTED_INT_KIND (9) ! Integer*4
INTEGER, PARAMETER :: EU-IM_I8 = SELECTED_INT_KIND (18) ! Integer*8
INTEGER, PARAMETER :: R4 = SELECTED_REAL_KIND (6, 37) ! Real*4
INTEGER, PARAMETER :: R8 = SELECTED_REAL_KIND (15, 300) ! Real*8

To implement these types in your code, please add the following line to your modules

use itm_types

(More information about the EU-IM libraries.)

8.3.2 Standardized Physical Constants

To avoid discrepancies in simulations from using different definitions of the physical constants, the EU-
IM-TF has agreed upon a set of standardized physical constants (all in SI units except for temperatures)
based on the NIST recommendations . It is recommended that these constant be used throughout all
EU-IM modules. The Fortran90 module defining the standardized physical constants itm_constants.f90
is hosted by the project itmshared . To check out the relevant files please do

150 Chapter 8. Conventions

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

svn checkout https://gforge6.eufus.eu/svn/itmshared/trunk/src/itm_constants target_dir

8.3.3 Invalid Data Base Entries

The EU-IM data base does not allow for setting data base entries directly to invalid in case they should
not be set. Since the Universal Access Layer (UAL) always pulls out complete CPOs, i.e. complete
data structures, of which not all fields may be filled, the problem arose of how to identify those fields
which have not been filled. In the case of arrays, this is simply done by not associating the corresponding
pointer. In the case of scalars, however, unique values for floats and integers had to be defined to identify
empty fields. These values identify invalid data base entries and can be tested through comparison. The
values for invalid data base entries in Fortran90 are defined below:

INTEGER, PARAMETER :: itm_int_invalid = -999999999
REAL(R8), PARAMETER :: itm_r8_invalid = -9.0D40

They have been found to be safely out of any physical range for the affected fields such that no accidental
confusion with real values may occur. The Fortran90 module defining these values itm_types.f90 is
hosted by the project itmshared . To check out the relevant files please do

svn checkout https://gforge6.eufus.eu/svn/itmshared/trunk/src/itm_types target_dir

The module also includes three functions of type boolean itm_is_valid_int4 , itm_is_valid_int8 , and
itm_is_valid_real8 which are overloaded under the interface itm_is_valid to check whether a data base
entry has been filled. Example:

if (itm_is_valid(equilibrium%global_param%i_plasma)) then
write(*, *) 'Plasma current Ip = ', equilibrium%global_param%i_plasma

end if

8.3.4 Enumerated datatypes/Identifiers

This section concerns how to specify the origin of data in certain types of CPOs. The specification is per-
formed using the datatype identifier. The following specifies the conventions of the allowed enumerated
datatypes.

• cocos_identifier.xml

• coordinate_identifier.xml

• coredelta_identifier.xml

• coreneutral_identifier.xml

• coresource_identifier.xml

• coretransp_identifier.xml

• distsource_identifier.xml

• fast_particle_origin_identifier.xml

• fast_thermal_filter_identifier.xml

• fokker_planck_source_identifier.xml

• pellet_shape_identifier.xml

8.3. Numerical and computational conventions 151

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

• species_reference_identifier.xml

• wall_identifier.xml

• wave_identifier.xml

8.3.4.1 Example: How to fill coresource/values/sourceid

When filling in an enumerated datatype, like coresource/values/sourceid, it is recomended to use the pa-
rameters and functions built into the fortran modules associated with each such datatype. These modules
are available as part of the UAL package. As an examples we may include the coresource_identifier:

use coresource_identifier, only: fusion, get_type_name, get_type_description__ind

Here the value of the integer-parameter fusion is the Flag for fusion reactions in the core-
source_identifier structure (i.e. fusion=5). Once we know the Flag we may get the Id
using the function Id=get_type_name(Flag) and the Description using the function Descrip-
tion=get_type_description__ind(Flag). These function are available for every datatype.

Below you have an example of how to use these functions:

program coresource_example use euitm_schemas, only: type_coresource use
coresource_identifier, only: fusion, get_type_name,
get_type_description__ind use write_structures, only: open_write_file,
write_cpo, close_write_file use deallocate_structures, only:
deallocate_cpo implicit none

type (type_coresource) :: coresource
integer :: idx, i

character*128 :: filename
integer :: shot, run

data filename / &
& 'coresource.cpo' &
& /

allocate(coresource%values(1))
allocate(coresource%values(1)%sourceid%id(1))
allocate(coresource%values(1)%sourceid%description(1))
coresource%values(1)%sourceid%flag = fusion
coresource%values(1)%sourceid%id = get_type_name(fusion)
coresource%values(1)%sourceid%description =
get_type_description__ind(fusion)

call open_write_file(1, filename)
call write_cpo(coresource, 'coresource')
call close_write_file

call deallocate_cpo(coresource)

end program coresource_example

This example program, and similar examples for other enumerated datatypes, are available in:

https://gforge6.eufus.eu/svn/itmshared/trunk/src/itm_constants/examples

8.3.5 Grid Types in Equilibrium CPO

Equilibria may be represented in a variety of different ways depending on which EU-IM module has
calculated them and which module shall use them. To avoid ambiguity and to allow modules to check

152 Chapter 8. Conventions

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

which type of equilibrium is stored in the equilibrium CPO, a unique grid identifier is stored in pro-
files_2d%grid_type. The grid identified currently consists of 4 strings (at 132 chars) with the following
structure (array indices in Fortran notation):

Position Content
grid_type(1) integer identifier for grid type
grid_type(2) string identifier for grid type
grid_type(3) integer identifier for poloidal angle
grid_type(4) string identifier for poloidal angle

8.3.5.1 Grid Type Identifier

The currently allowed values (integer and string) for the identifier of the grid type are listed below:

Integer Values String Value Description
1 rectangular Regular grid in (𝑅,𝑍). ‘EFIT-

like grid’
2 inverse Regular grid in Ψ, 𝜃. ‘flux sur-

face grid’.
3 irregular

Irregular grid. All fields in
profiles_2d are given as
(ndim1, 1)
degenerate 2D matrices, i.e. as
lists of vertices (for
triangles or quadrilaterals).

8.3.5.1.1 Poloidal Angle Identifier

The currently allowed values (integer and string) for the identifier of the poloidal angle are listed below:

Integer
Values

String Value Description

1 straight field
line

straight field line angle 𝜃 as defined in Straight Field Line
Coordinates

2 equal arc Poloidal angle 𝜃 defined by equal arc lengths along flux surfaces
3 polar Poloidal angle 𝜃 in toroidal coordinates as defined in Coordinate

System

8.3.6 Standardized EU-EU-IM Plasma Bundle

The EU-IM has agreed on a standardized way to bundle CPOs and control parameters inside KEPLER.

8.3. Numerical and computational conventions 153

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Field names Type Description
time real

The synthetic
time of the
simulation,
or for
time-dependent
workflows; the
end of the present
time step. For
example,
consider a time
dependent
workflows, where
physics quantities
are update one
after the other.
Thus,
while the physics
quantities are
updated the
various fields
below
(e.g. the CPOs)
may be describe
at
different time
points. In such
workflows the
this “time”-field
describe the time
at the end of the
present time step.
Units: (s)

CONTROL

tau real time-step (s)
tau_out real time interval for

saving output (s)

ETS

amix real mixing factor
amix_tr real mixing factor for

profiles
Continued on next page

154 Chapter 8. Conventions

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Table 8.2 – continued from previous page
Field names Type Description

sigma_source integer
option for origin
of plasma
electrical
conductivity: 0:
plasma
collisions;
1: transport
module; 2:
source module

solver_type integer choice of numeri-
cal solver

conv_rec real required frac-
tional conver-
gence

CPOS

MHD

equilibrium cpo see type and for-
tran descriptions

toroidfield cpo see type and for-
tran descriptions

mhd cpo see type and for-
tran descriptions

sawteeth cpo see type and for-
tran descriptions

CORE

coreprof cpo see type and for-
tran descriptions

coretransp cpo see type and for-
tran descriptions

coresource cpo see type and for-
tran descriptions

coreimpur cpo see type and for-
tran descriptions

coreneutral cpo see type and for-
tran descriptions

corefast cpo see type and for-
tran descriptions

coredelta cpo see type and for-
tran descriptions

compositionc cpo see type and for-
tran descriptions

neoclassic cpo see type and for-
tran descriptions

EDGE edge cpo see type and for-
tran descriptions

HCD
waves cpo see type and for-

tran descriptions
distsource cpo see type and for-

tran descriptions
Continued on next page

8.3. Numerical and computational conventions 155

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Table 8.2 – continued from previous page
Field names Type Description

distribution cpo see type and for-
tran descriptions

MACH

vessel cpo see type and for-
tran descriptions

wall cpo see type and for-
tran descriptions

nbi cpo see type and for-
tran descriptions

antennas cpo see type and for-
tran descriptions

ironmodel cpo see type and for-
tran descriptions

pfsystems cpo see type and for-
tran descriptions

DIAG
fusiondiag cpo see type and for-

tran descriptions
scenario cpo see type and for-

tran descriptions
EVENTS pellets cpo see type and for-

tran descriptions

156 Chapter 8. Conventions

CHAPTER

NINE

AMNS

9.1 Scientific Rationale and Main Objectives

The EU-IM has a broad need for data relating to atomic, molecular, nuclear and surface data (AMNS). In
particular, AMNS data are needed in several of the EU-IM modelling projects. A consistent approach,
taking into account the specific requirements of the EU-IM while maintaining the work aligned with
other European efforts in this area, is therefore required.

9.2 EU-IM contact person

David Coster

9.3 AMNS tasks

The AMNS work is divided into two broad areas:

• The maintenance and development of the AMNS library (and the associated AMNS CPO) to
provide access to AMNS data in the various languages used by the codes within the Work Package

• The addition to the AMNS database of AMNS data needed by the codes within the Work Package

9.4 AMNS Documentation

The AMNS library is meant to be called by Work Package codes if the codes need data for Atomic,
Molecular, Nuclear or Surface processes. The calling sequence is described in more detail below, but
the basic idea is: (1) initialize the package; (2) request data for a particular reaction by initializing a
“table” for that reaction; (3) (repeatedly) requesting data for that reaction as a fuction of plasma or other
parameters; (4) finishing with the table; and (5) finishing with the AMNS library.

The actual AMNS data is provided by CPOs stored under the “amns” tokamak and will first be searched
for in the user’s database, and if not found there, the system will default to obtaining the data from the
public AMNS database. Multiple versions of the AMNS data are possible: in 4.09a and 4.09b this was
done via a mysql database; in 4.10a and 4.10b this is done by having an index block stored in shot 0, run
1 of the AMNS CPO.

The implementation in IMAS IDS’s has followed the example of the CPO implementation using shot 0,
run 1 to store an index of available data.

157

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

Some papers:

• “Simulations of the edge plasma: the role of atomic, molecular and surface physics”, AIP Confer-
ence Proceedings 1125, 113 (2009); https://doi.org/10.1063/1.3141685, D. P. Coster, X. Bonnin,
D. Reiter, A. Kukushkin, S. Gori, P. Krstic, P. Strand, L.-G. Eriksson, and Contributors to the
EFDA-TF-ITM

• “Implementation of PIC/MC Code BIT1 in ITM Platform”, Contrib. Plasma Phys., 54 (4-6),
399–403 (2014), https://doi.org/10.1002/ctpp.201410029, D. Tskhakaya, D. Coster and ITM-TF
contributors

The present coding for the AMNS project is done in the gforge amnsproto project.

9.4.1 AMNS User Interface

This section discusses the user interface to the AMNS subsystem.

The AMNS library is made available via a module - available versions can be found by executing

module avail amns
module avail AMNS

The include and library locations are specified via the “pkg-config” system. To display the available
package names do

pkg-config --list-all | grep -i amns

The AMNS library can be called from

1. Fortran

2. C /C++

3. Python

4. Java

5. Matlab

The various bindings for the different languages are given below, but make use of a set of standard
concepts which are described first.

9.4.1.1 AMNS User Interface Data Structures

A number of data structures are used by the library interface. Some are opaque (i.e. the contents are not
of relevance to the user), and some need to be set or read by the user programme.

The two opaque types are handles which are returned by the setup routines and then need to be passed
to the other routines:

1. amns_handle_type, used for the database wide routines

2. amns_handle_rx_type, used for the reaction specific routines

In some language bindings these are the basis of classes.

The non-opaque types are:

1. amns_error_type, used to indicate if an error occured and, if so, what the error was

158 Chapter 9. AMNS

https://doi.org/10.1063/1.3141685
https://doi.org/10.1002/ctpp.201410029
https://gforge6.eufus.eu/gf/project/amnsproto/

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

2. amns_reaction_type, used to indicate the requested reaction

3. amns_set_type, used to set an AMNS internal parameter

4. amns_query_type, used to query an AMNS internal parameter

5. amns_answer_type, used to contain the answer from an AMNS query

6. amns_version_type, used to specify the AMNS version

7. amns_reactants_type, used to specify the reactants to a reaction

8. amns_reactant_type, a sub-component of amns_reactants_type used to characterize the individual
reactants

The definitions of these data types can be found at the doxygen documentation for the AMNS User
routines

9.4.1.2 AMNS User Interface Data Reactions

The currently available reactions specified in reaction_typex%string in the call to EU-
IM_AMNS_SETUP_TABLE are

1. RC: Recombination (acd)

2. EI: Electron Impact Ionisation (scd)

3. CX: CX recombination coeffts (ccd)

4. BR: Recomb/brems power coeffts (prb)

5. LR: Line radiation (plt)

6. ZE: Effective Charge (zcd)

7. ZE2: Effective Square Charge (ycd)

8. EIP: Effective Ionisation Potential (ecd)

9. some nuclear reactions

10. Cross-sections of different processes

11. ...

The actual reactions are listed in the AMNS section.

9.4.1.3 AMNS User Interface Data Queries

The currently available queries for query%string in the call to EU-IM_AMNS_QUERY is

1. version: Return the version information

The currently available queries for query%string in the call to EU-IM_AMNS_QUERY_TABLE are

1. source: source (origin) of the data

2. no_of_reactants: number of tractants involved

3. index: Not sure what this is

4. filled: whether the data table has been filled (“Filled” or “Empty”)

9.4. AMNS Documentation 159

https://portal.eufus.eu/documentation/EU-IM/doxygen/amns/amnsproto/User/4.10b/
https://portal.eufus.eu/documentation/EU-IM/doxygen/amns/amnsproto/User/4.10b/

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

5. reaction_type: reaction type

6. reactants: nuclear charges of reactants

7. version: information about the version

8. state_label: label for the charge state (if appropriate)

9. result_unit: units of the result

10. result_label: description of the result

9.4.1.4 AMNS User Interface Data Setting Options

The currently setting options for set%string in the call to EU-IM_AMNS_SET is

1. NONE

The currently available setting options for set%string in the call to EU-IM_AMNS_SET_TABLE is

1. nowarn: deactivate warning when extrapolating

9.4.1.5 FORTRAN AMNS User Interface

The fortran interface to the AMNS subsystem is based on a standardised set of calls to the AMNS library.
The details of what lies behind these calls is the responsibility of the AMNS data providers and does not
need to be understood by the users of the AMNS data.

The code modules devloped for the AMNS project are hosted in gforge as the project amnsproto.

9.4.1.5.1 AMNS User Interface: Fortran Calls

The 9 calls to the AMNS system are:

1. EU-IM_AMNS_SETUP, initialization call for the AMNS package

subroutine EU-IM_AMNS_SETUP(handle, version, error_status)
optional version, error_status
type(amns_handle_type), intent(out) :: handle
type(amns_version_type), intent(in) :: version
type(amns_error_type), intent(out) :: error_status

2. EU-IM_AMNS_QUERY, query routine for the AMNS package

subroutine EU-IM_AMNS_QUERY(handle,query,answer,error_status)
optional error_status
type(amns_handle_type), intent(in) :: handle
type(amns_query_type), intent(in) :: query
type(amns_answer_type), intent(out) :: answer
type(amns_error_type), intent(out) :: error_status

3. EU-IM_AMNS_SET, set a parameter for the AMNS package

subroutine EU-IM_AMNS_SET(handle,set,error_status)
optional error_status
type(amns_handle_type), intent(in) :: handle
type(amns_set_type), intent(in) :: set
type(amns_error_type), intent(out) :: error_status

4. EU-IM_AMNS_FINISH, finalization call for the AMNS package

160 Chapter 9. AMNS

https://gforge6.eufus.eu/gf/project/amnsproto/

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

subroutine EU-IM_AMNS_FINISH(handle, error_status)
optional error_status
type(amns_handle_type), intent(inout) :: handle
type(amns_error_type), intent(out) :: error_status

5. EU-IM_AMNS_SETUP_TABLE, initialization call for a particular reaction

subroutine EU-IM_AMNS_SETUP_TABLE(handle, reaction_type, reactant, handle_rx, error_status)
optional error_status
type(amns_handle_type), intent(in) :: handle
type(amns_reaction_type), intent(in) :: reaction_type
type(amns_reactants_type), intent(in) :: reactant
type(amns_handle_rx_type), intent(out) :: handle_rx
type(amns_error_type), intent(out) :: error_status

6. EU-IM_AMNS_QUERY_TABLE, query routine for a particular reaction

qsubroutine EU-IM_AMNS_QUERY_TABLE(handle_rx,query,answer,error_status)
optional error_status type(amns_handle_rx_type), intent(in) ::
handle_rx type(amns_query_type), intent(in) :: query
type(amns_answer_type), intent(out) :: answer
type(amns_error_type), intent(out) :: error_status

7. EU-IM_AMNS_SET_TABLE, set a parameter for a particular reaction

subroutine EU-IM_AMNS_SET_TABLE(handle_rx,set,error_status)
optional error_status
type(amns_handle_rx_type), intent(in) :: handle_rx
type(amns_set_type), intent(in) :: set
type(amns_error_type), intent(out) :: error_status

8. EU-IM_AMNS_FINISH_TABLE, finalization call for a particular reaction

subroutine EU-IM_AMNS_FINISH_TABLE(handle_rx, error_status)
optional error_status
type(amns_handle_rx_type), intent(inout) :: handle_rx
type(amns_error_type), intent(out) :: error_status

9. EU-IM_AMNS_RX, get the rates associated with the input args for a particular reaction

interface EU-IM_AMNS_RX
module procedure EU-IM_AMNS_RX_1, EU-IM_AMNS_RX_2, EU-IM_AMNS_RX_3

end interface

subroutine EU-IM_AMNS_RX_1(handle_rx,out,arg1,arg2,arg3,error_status)
optional arg2,arg3,error_status
type(amns_handle_rx_type), intent(inout) :: handle_rx
real (kind=R8), intent(out) :: out(:)
real (kind=R8), intent(in) :: arg1(:),arg2(:),arg3(:)
type(amns_error_type), intent(out) :: error_status

subroutine EU-IM_AMNS_RX_2(handle_rx,out,arg1,arg2,arg3,error_status)
optional arg2,arg3,error_status
type(amns_handle_rx_type), intent(inout) :: handle_rx
real (kind=R8), intent(out) :: out(:,:)
real (kind=R8), intent(in) :: arg1(:,:),arg2(:,:),arg3(:,:)
type(amns_error_type), intent(out) :: error_status

subroutine EU-IM_AMNS_RX_3(handle_rx,out,arg1,arg2,arg3,error_status)
optional arg2,arg3,error_status
type(amns_handle_rx_type), intent(inout) :: handle_rx
real (kind=R8), intent(out) :: out(:,:,:)
real (kind=R8), intent(in) :: arg1(:,:,:),arg2(:,:,:),arg3(:,:,:)
type(amns_error_type), intent(out) :: error_status

9.4. AMNS Documentation 161

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

9.4.1.5.2 AMNS User Interface Example (Fortran)

An example of the use of the code can be found in the (fortran minimal example):

program minimal
use itm_types
use amns_types
use amns_module

implicit none

type (amns_handle_type) :: amns ! AMNS global handle
type (amns_handle_rx_type) :: amns_rx ! AMNS table handle
type (amns_reaction_type) :: xx_rx
type (amns_reactants_type) :: species
real (kind=R8) :: te=100.0_R8, ne=1e20_R8, rate

call EU-IM_AMNS_SETUP(amns) ! set up the AMNS system
allocate(species%components(4)) ! set up reactants
species%components = (/ amns_reactant_type(6, 1, 12, 0), &

amns_reactant_type(1, 0, 2, 0), &
amns_reactant_type(6, 0, 12, 1), &
amns_reactant_type(1, 1, 2, 1) /)

xx_rx%string='CX' ! set up reaction
call EU-IM_AMNS_SETUP_TABLE(amns, xx_rx, species, amns_rx) ! set up table
call EU-IM_AMNS_RX(amns_rx, rate, te, ne) ! get results
write(*,*) 'Rate = ', rate
call EU-IM_AMNS_FINISH_TABLE(amns_rx) ! finish with table
call EU-IM_AMNS_FINISH(amns) ! finish with amns

end program minimal

9.4.1.5.3 AMNS User Interface Example Fortran Makefile

An example Makefile demonstrating the use of the AMNS routines:

obj/minimal: src/minimal.f90
ifort -g -o $@ $< ${shell eval-pkg-config --cflags --libs \

amns-amd64_intel_12 itmtypes-amd64_intel_12 ual-amd64_intel_12}

Other examples can be found (here):

9.4.2 C AMNS User Interface

The C interface to the AMNS subsystem is based on a standardised set of calls to the AMNS library.
The details of what lies behind these calls is the responsibility of the AMNS data providers and does not
need to be understood by the users of the AMNS data.

The code modules devloped for the AMNS project are hosted in gforge as the project amnsproto.

9.4.2.1 AMNS User Interface: C Calls

The 9 calls to the AMNS system are:

1. EU-IM_AMNS_SETUP, initialization call for the AMNS package

void EU-IM_AMNS_C_SETUP(void **handle_out, amns_error_type *error_status);

2. EU-IM_AMNS_QUERY, query routine for the AMNS package

162 Chapter 9. AMNS

https://gforge6.eufus.eu/svn/amnsproto/tags/examples/fortran/
https://gforge6.eufus.eu/svn/amnsproto/tags/examples/
https://gforge6.eufus.eu/gf/project/amnsproto/

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

void EU-IM_AMNS_C_QUERY(void *handle_in, amns_query_type *query,
amns_answer_type *answer, amns_error_type *error_status)

3. EU-IM_AMNS_SET, set a parameter for the AMNS package

void EU-IM_AMNS_C_SET(void *handle_in, amns_set_type *set, amns_error_type *error_status);

4. EU-IM_AMNS_FINISH, finalization call for the AMNS package

void EU-IM_AMNS_C_FINISH(void **handle_inout, amns_error_type *error_status);

5. EU-IM_AMNS_SETUP_TABLE, initialization call for a particular reaction

void EU-IM_AMNS_C_SETUP_TABLE(void *handle_in, amns_reaction_type *reaction_type,
void *reactant_handle_in, void **handle_rx_out,
amns_error_type *error_status);

6. EU-IM_AMNS_QUERY_TABLE, query routine for a particular reaction

void EU-IM_AMNS_C_QUERY_TABLE(void *handle_rx_in, amns_query_type *query,
amns_answer_type *answer, amns_error_type *error_status);

7. EU-IM_AMNS_SET_TABLE, set a parameter for a particular reaction

void EU-IM_AMNS_C_SET_TABLE(void *handle_rx_in, amns_set_type *set,
amns_error_type *error_status);

8. EU-IM_AMNS_FINISH_TABLE, finalization call for a particular reaction

void EU-IM_AMNS_C_FINISH_TABLE(void **handle_rx_inout, amns_error_type *error_status);

9. EU-IM_AMNS_RX, get the rates associated with the input args for a particular reaction

void EU-IM_AMNS_C_RX_0_A(void *handle_rx_in, double *out,
double arg1, amns_error_type *error_status);

void EU-IM_AMNS_C_RX_0_B(void *handle_rx_in, double *out,
double arg1, double arg2, amns_error_type *error_status);

void EU-IM_AMNS_C_RX_0_C(void *handle_rx_in, double *out,
double arg1, double arg2, double arg3, amns_error_type *error_s

tatus);

void EU-IM_AMNS_C_RX_1_A(void *handle_rx_in, int nx, double *out,
double *arg1, amns_error_type *error_status);

void EU-IM_AMNS_C_RX_1_B(void *handle_rx_in, int nx, double *out,
double *arg1, double *arg2, amns_error_type *error_status);

void EU-IM_AMNS_C_RX_1_C(void *handle_rx_in, int nx, double *out,
double *arg1, double *arg2, double *arg3, amns_error_ty

pe *error_status);

void EU-IM_AMNS_C_RX_2_A(void *handle_rx_in, int nx, int ny,
double *out, double *arg1, amns_error_type *error_status);

void EU-IM_AMNS_C_RX_2_B(void *handle_rx_in, int nx, int ny,
double *out, double *arg1, double *arg2, amns_error_type *error_

→˓status);
void EU-IM_AMNS_C_RX_2_C(void *handle_rx_in, int nx, int ny,

double *out, double *arg1, double *arg2, double *arg3, amns_error_type
→˓*error_status);

void EU-IM_AMNS_C_RX_3_A(void *handle_rx_in, int nx, int ny, int nz,
double *out, double *arg1, amns_error_type *error_status);

void EU-IM_AMNS_C_RX_3_B(void *handle_rx_in, int nx, int ny, int nz,
double *out, double *arg1, double *arg2, amns_error_type *error_

→˓status);
void EU-IM_AMNS_C_RX_3_C(void *handle_rx_in, int nx, int ny, int nz,

double *out, double *arg1, double *arg2, double *arg3, amns_error_type
→˓*error_status);

9.4. AMNS Documentation 163

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

In addition, service routines are provided for dealing with reactants:

void EU-IM_AMNS_C_SETUP_REACTANTS(void **reactants_handle_out, char string_in[reaction_
→˓length],

int index_in, int n_react
ants);
void EU-IM_AMNS_C_SET_REACTANT(void *reactants_handle_in, int reactant_index, amns_reactant_
→˓type *reactant_in);
void EU-IM_AMNS_C_GET_REACTANT(void *reactants_handle_in, int reactant_index, amns_reactant_
→˓type *reactant_out);
void EU-IM_AMNS_C_FINISH_REACTANTS(void **reactants_handle_inout);

9.4.2.2 AMNS User Interface Example (C)

An example of the use of the code can be found in the (c minimal example):

#include "amns_interface.h"

int main(int argc, char *argv[])
{

void* amns_handle = NULL;
amns_c_error_type error_stat = DEFAULT_AMNS_C_ERROR_TYPE;
void* reactants_handle = NULL;
amns_c_reactant_type species1 = {.ZN=6, .ZA=1, .MI=12, .LR=0};
amns_c_reactant_type species2 = {.ZN=1, .ZA=0, .MI=2 , .LR=0};
amns_c_reactant_type species3 = {.ZN=6, .ZA=0, .MI=12, .LR=1};
amns_c_reactant_type species4 = {.ZN=1, .ZA=1, .MI=2 , .LR=1};
amns_c_reaction_type xx_rx = {.string = "CX"};
void* amns_cx_handle;
double rate;

EU-IM_AMNS_CC_SETUP(AMNS_HANDLE, &ERROR_STAT)
printf("error = %s: %s\n", error_stat.flag ? "true" : "false", error_stat.string);
EU-IM_AMNS_CC_SETUP_REACTANTS(REACTANTS_HANDLE, "", 0, 4)
EU-IM_AMNS_CC_SET_REACTANT(reactants_handle, 1, SPECIES1)
EU-IM_AMNS_CC_SET_REACTANT(reactants_handle, 2, SPECIES2)
EU-IM_AMNS_CC_SET_REACTANT(reactants_handle, 3, SPECIES3)
EU-IM_AMNS_CC_SET_REACTANT(reactants_handle, 4, SPECIES4)
EU-IM_AMNS_CC_SETUP_TABLE(amns_handle, XX_RX, REACTANTS_HANDLE, &AMNS_CX_HANDLE, &ERROR_

→˓STAT)
printf("error = %s: %s\n", error_stat.flag ? "true" : "false", error_stat.string);
EU-IM_AMNS_CC_RX_0_B(amns_cx_handle, RATE, 100.0, 1E20, &ERROR_STAT)
printf("error = %s: %s\n", error_stat.flag ? "true" : "false", error_stat.string);
printf("rate=%e\n", rate);
EU-IM_AMNS_CC_FINISH_TABLE(AMNS_CX_HANDLE, &ERROR_STAT)
printf("error = %s: %s\n", error_stat.flag ? "true" : "false", error_stat.string);
EU-IM_AMNS_CC_FINISH_REACTANTS(REACTANTS_HANDLE)
EU-IM_AMNS_CC_FINISH(AMNS_HANDLE, &ERROR_STAT)
printf("error = %s: %s\n", error_stat.flag ? "true" : "false", error_stat.string);
return 0;

}

9.4.2.3 AMNS User Interface Example C Makefile

An example Makefile demonstrating the use of the AMNS routines:

obj/minimal: src/minimal.c
gcc -g -o $@ $< ${shell eval-pkg-config --cflags --libs\

amns-ifort itmconstants ual-amd64_intel_12}

Other examples can be found (here):

164 Chapter 9. AMNS

https://gforge6.eufus.eu/svn/amnsproto/tags/examples/c/
https://gforge6.eufus.eu/svn/amnsproto/tags/examples/

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

9.4.3 Python AMNS User Interface

The Python interface to the AMNS subsystem is based on a standardised set of calls to the AMNS
library. The details of what lies behind these calls is the responsibility of the AMNS data providers and
does not need to be understood by the users of the AMNS data.

The code modules devloped for the AMNS project are hosted in gforge as the project amnsproto.

9.4.3.1 AMNS User Interface: Python Calls

The Python interface creates

1. Amns (class)

(a) finalize (method)

(b) get_table (method)

(c) query (method)

(d) set (method)

2. Table (class)

(a) data (method)

(b) finalize (method)

(c) query (method)

(d) set (method)

3. Reactants (class)

(a) add (method)

(b) test (method)

(c) value (method)

9.4.3.2 AMNS User Interface Example (Python)

An example of the use of the code can be found in the (python minimal example):

#! /usr/bin/env python
-*- coding: utf-8 -*-
import amns
import numpy as np

amnsdb = amns.Amns()
r = amns.Reactants()
r.add(6,1,12)
r.add(1,0,2)
r.add(6,0,12,lr=1)
r.add(1,1,2,lr=1)
table = amnsdb.get_table("CX", r)
print "table.no_of_reactants", table.no_of_reactants
print table.data(np.array([100.0]), np.array([1e20]))
amnsdb.finalize()

9.4. AMNS Documentation 165

https://gforge6.eufus.eu/gf/project/amnsproto/
https://gforge6.eufus.eu/svn/amnsproto/tags/examples/python/

EUROfusion Integrated Modelling workflows Documentation, Release 3.0

166 Chapter 9. AMNS

CHAPTER

TEN

USING THE WPCD WORKFLOWS

Use of the WPCD workflows is available via the EUROfusion Gateway, the JET analysis cluster
(FREIA) and the ITER IO HPC

The WPCD documentation and workflow concepts are copyright of the EUROfusion consortium.

167

	Introduction to the EUROfusion Project Code Development for integrated modelling
	The European Integrated Modelling (EU-IM) approach
	Mission
	Achievements
	Publications
	Contributors
	Glossary

	Infrastructure
	Kepler
	Introduction to Kepler - basics
	Installing Kepler and tutorial workflows

	Kepler IMAS actors
	IMAS Kepler based configuration
	Running Kepler using IMAS environment
	Setting up environment
	Backing up old files

	Creating place to store your personal installations of Kepler
	Running Kepler (default release)

	FC2K - Embedding user codes into Kepler
	FC2K basics
	What FC2K actually does?
	FC2K main window
	Actor description
	Environment
	``Arguments'' tab explained
	``Parameters'' tab explained
	``Source'' tab explained
	Libraries

	``Settings'' tab explained
	``Documentation'' tab explained
	``Interface'' tab explained

	Incorporating user codes into Kepler using FC2K - exercises
	Embedding Fortran codes into Kepler
	Embedding C++ codes

	FC2K - developer guidelines
	What code wrapper actually does?
	Development of Fortran codes
	Subroutine syntax
	Arguments list
	Code parameters
	Diagnostic info
	Examples

	Development of C++ codes
	Function syntax
	Arguments list
	Code parameters
	Diagnostic info
	Examples

	Delivery of the user code

	FC2K - Example 1 - Embedding Fortran codes into Kepler (no CPOs)
	Get familiar with codes that will be incorporated into Kepler
	Build the code by issuing
	Prepare environment for FC2K
	Start FC2K application
	Open a nocpo_example_1 project
	Project settings
	After all the settings are correct, you can generate actor
	Confirm Kepler compilation
	You can now start Kepler and use generated actor
	Launch the workflow

	FC2K - Example 2 - Embedding Fortran code into Kepler (CPOs)
	Get familiar with codes that will be incorporated into Kepler
	Build the code
	Prepare environment for FC2K
	Start FC2K application
	Open project cposlice2cposlicef_fc2k
	Project settings
	After all the settings are correct, you can generate actor
	Confirm Kepler compilation
	You can now start Kepler and use generated actor
	Launch the workflow

	FC2K - Example 3 - Embedding C++ code within Kepler (no CPOs)
	Get familiar with codes that will be incorporated into Kepler
	Build the code by issuing
	Prepare environment for FC2K
	Start FC2K application
	Open project simplecppactor_nocpo
	Project settings
	Actor generation
	Confirm Kepler compilation
	You can now start Kepler and use generated actor
	Launch the workflow

	FC2K - Example 4 - Embedding C++ code within Kepler (CPOs)
	Get familiar with codes that will be incorporated into Kepler
	Build the code by issuing
	Prepare environment for FC2K
	Start FC2K application
	Open project simplecppactor
	Project settings
	Actor generation
	Confirm Kepler compilation
	You can now start Kepler and use generated actor

	IMAS Kepler 2.1.3 (default release)
	Installation of default version of Kepler (without actors)
	Installation of ``dressed'' version of Kepler (with actors)

	IMAS Kepler 2.1.5 (release candidate)
	Installation based on README file

	General Grid Description and Grid Service Library
	Resources
	Documentation
	Outdated documentation
	Example grids
	Example grid details
	Example Grid #1: 2d structured R,Z grid
	Object classes
	Example 2: B2 grid

	Object list examples
	Subgrid examples

	Grid service library
	Using the grid service library
	Setting up the environment
	Checking out and testing the grid service library

	Example applications (outdated)
	Plotting 3d wall geometry with VisIt (temporary solution, not required any more)
	Using UALConnector to visualize CPOs using the general grid description

	IMP3 General Grid Description and Grid Service Library - Tutorial
	Setup your environment
	Compile & run examples
	Visualize

	European Transport Simulator (ETS)
	ETS Documentation
	Configuration of the ETS-5 workflow in Kepler
	ETS releases

	ETS workflows in KEPLER
	Configuring the ETS run
	Workflow parameters
	General Parameters
	Time resolution
	Transport
	Equilibrium
	Numerics
	Equilibrium

	Ion, Impurity and Neutral Composition
	Equations to be solved and boundary conditions
	Main Plasma
	Impurity
	Neutrals
	Input profiles interpolation

	Convergence loop
	Equilibrium
	Initialization Settings
	Run Settings

	Transport
	Transport models
	Background transport
	Edge transport barrier
	Total transport coefficients

	MHD
	Sources and impurity
	Analytical & Impurity sources
	HCD sources
	Power control
	Total power

	Instantaneous events & Actuators
	Pellet
	Sawtooth
	Actuators

	Scenario output
	Visualization during the run
	Multiple Tab Display
	ETSviz

	List of Actors
	Equilibrium actors
	Core transport actors
	Heating and current drive actors
	Events actors
	Non-physics actors

	Turbulent Flux Quantities in Transport Models
	Overview
	Particle Flux as an Example
	Metric Coefficients
	Heat Fluxes
	Ds and Vs from Turbulence Codes to Transport Solvers
	Ambipolarity
	Statistical Character

	Running Exponential Average
	Overview
	Definition
	Differential Equation
	Equivalence to Past-Time Convolution Integral
	notes

	Equilibrium and MHD Stability workflow (EQSTABIL)
	Workflow rationale
	Workflow organization & design
	Initialization
	FixedBndCode
	Redefining the plasma boundary (Cutoff)
	Calculation of Equilibrium (Fixbndequil)
	Visualization (Visual)

	StabCode
	Finalize

	Actors involved
	Setting up Workflow and Actor parameters
	Setting workflow parameters
	Setting actor parameters

	EQSTABIL Tutorial

	The EQRECONSTRUCT workflow
	1. Workflow rationale
	2. Workflow organization & design
	I - START
	II - CHECK_DATA
	III - Reconstruct
	IV - SAVE SLICE

	3. Installing and running the workflow
	4. Setting up the Workflow and Actor parameters
	I - Setting the workflow parameters
	II - Setting actor parameters

	6. News and Recent activity

	Turbulence with synthetic diagnostics workflows
	HESEL Documentation
	HESEL as stand-alone
	Obtaining and building HESEL
	HESEL input
	HESEL input
	Profile datafile
	Probe positions

	HESEL code structure
	Running a HESEL simulation
	HESEL output

	HESEL as an actor
	HESEL in the KEPLER workflow

	Codes
	IMASviz
	IMASgo!
	How to turn a C++ code into a Kepler actor
	Adapt your C++ function
	How to use code parameters
	Compile your function as a library
	Full example
	How to fill the FC2K window

	Plasma equilibrium and MHD list of codes
	Free boundary equilibrium codes
	Fixed boundary equilibrium codes
	Linear MHD stability codes
	Sawtooth Crash Modules
	ELM Modules
	NTM Modules
	Numerical Tools

	Heating, current drive (H&CD) and fast particles list of codes
	Electron heating codes
	EC wave codes
	Combined electron Fokker-Planck codes
	Wave codes for ion cyclotron heating
	Fokker-Planck codes for ion cyclotron heating
	NBI sources for Fokker-Planck codes
	Nuclear sources (input for Fokker-Planck codes)
	NBI Fokker-Planck codes
	Runaway electrons
	Advanced codes
	Codes for fast ion-MHD interactions

	Transport list of codes

	Conventions
	Standard Machine Names
	Physics Conventions
	Coordinate System
	Representation of the Magnetic Field and Current
	Poloidal and Toroidal Fluxes
	Safety Factor
	Signs
	COCOS - toroidal coordinate conventions
	Equilibrium COCOS transformation library and actor

	The Flux Surface Average
	The Toroidal Flux Radius as the Radial Coordinate
	Toroidal and Parallel Current
	Straight Field Line Coordinates
	Plasma Betas
	Internal Inductance
	Poloidal Angle Dimension in Equilibrium CPO

	Numerical and computational conventions
	Standardized Variable Types
	Standardized Physical Constants
	Invalid Data Base Entries
	Enumerated datatypes/Identifiers
	Example: How to fill coresource/values/sourceid

	Grid Types in Equilibrium CPO
	Grid Type Identifier
	Poloidal Angle Identifier

	Standardized EU-EU-IM Plasma Bundle

	AMNS
	Scientific Rationale and Main Objectives
	EU-IM contact person
	AMNS tasks
	AMNS Documentation
	AMNS User Interface
	AMNS User Interface Data Structures
	AMNS User Interface Data Reactions
	AMNS User Interface Data Queries
	AMNS User Interface Data Setting Options
	FORTRAN AMNS User Interface
	AMNS User Interface: Fortran Calls
	AMNS User Interface Example (Fortran)
	AMNS User Interface Example Fortran Makefile

	C AMNS User Interface
	AMNS User Interface: C Calls
	AMNS User Interface Example (C)
	AMNS User Interface Example C Makefile

	Python AMNS User Interface
	AMNS User Interface: Python Calls
	AMNS User Interface Example (Python)

	Using the WPCD workflows

