Core plasma 1D profiles as a function of the toroidal flux coordinate, obtained by solving the core transport equations (can be also fitted profiles from experimental data). The codeparam element here describes the parameters of the transport equation solver and/or those of the fitting program. Time-dependent CPO.
<xs:element name="coreprof"><xs:annotation><xs:documentation>Core plasma 1D profiles as a function of the toroidal flux coordinate, obtained by solving the core transport equations (can be also fitted profiles from experimental data). The codeparam element here describes the parameters of the transport equation solver and/or those of the fitting program. Time-dependent CPO.</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element ref="datainfo"/><xs:element name="rho_tor_norm" type="vecflt_type"><xs:annotation><xs:documentation>Normalised toroidal flux coordinate values (= rho_tor normalised to the value at the last radial grid point, which is quasi at the Last Closed Flux Surface); Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="rho_tor" type="vecflt_type"><xs:annotation><xs:documentation>Toroidal flux coordinate (not normalised, equivalent to rho_tor_norm) [m]; Vector (nrho). Time-dependent.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="drho_dt" type="vecflt_type"><xs:annotation><xs:documentation>Time derivative of rho_tor [m/s]; Vector (nrho). Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="toroid_field"><xs:annotation><xs:documentation>Toroidal field information entering the definition of rho_tor, for reference only. The physical value of the toroidal field should be taken from the toroidfield CPO. Time-dependent.</xs:documentation><xs:appinfo>machine description</xs:appinfo></xs:annotation><xs:complexType><xs:sequence><xs:element name="b0" type="xs:float"><xs:annotation><xs:documentation>Vacuum field at r0 [T]; Time-dependent. Scalar.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="b0prime" type="xs:float"><xs:annotation><xs:documentation>Time derivative of the vacuum field at r0 [T/s]; Time-dependent. Scalar.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="r0" type="xs:float"><xs:annotation><xs:documentation>Characteristic major radius of the device (used in publications, usually middle of the vessel at the equatorial midplane) [m]. Scalar.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="time" type="xs:float"><xs:annotation><xs:documentation>Time [s] (exact time slice used from the time array of the source signal, here the toroidfield CPO. If the time slice does not exist in the time array of the source signal, it means linear interpolation has been used); Time-dependent; Scalar.</xs:documentation></xs:annotation></xs:element></xs:sequence></xs:complexType></xs:element><xs:element ref="composition"/><xs:element ref="desc_impur"/><xs:element name="compositions" type="compositions_type"><xs:annotation><xs:documentation>Contains all the composition information for the simulation (main ions, impurities, neutrals, edge species).</xs:documentation></xs:annotation></xs:element><xs:element name="psi"><xs:annotation><xs:documentation>Poloidal magnetic flux [Wb]; Time-dependent;</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="value" type="vecflt_type" default="[0.0,0.0]"><xs:annotation><xs:documentation>Signal value [Wb]; Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="ddrho" type="vecflt_type" default="[0.0,0.0]"><xs:annotation><xs:documentation>Radial derivative (dvalue/drho_tor) [Wb.m^-1]; Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element><xs:element name="d2drho2" type="vecflt_type" default="[0.0,0.0]"><xs:annotation><xs:documentation>Second order radial derivative (d2value/drho_tor2) [Wb.m^-2]; Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element><xs:element name="ddt_rhotorn" type="vecflt_type"><xs:annotation><xs:documentation>Time derivative of the poloidal flux at constant rho_tor_norm [V]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="ddt_phi" type="vecflt_type"><xs:annotation><xs:documentation>Time derivative of the poloidal flux at constant toroidal flux [V]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation></xs:annotation></xs:element><xs:element name="flag" type="xs:integer" default="0"><xs:annotation><xs:documentation>Flag describing how the profile has been processed : 0-not calculated; 1-interpretative; 2-calculated by the transport solver; 3-calculated by a separate code : in that case only, description of the code provided in codeparam at the same level; 4-used value from the previous time step; Time-dependent; Scalar</xs:documentation></xs:annotation></xs:element><xs:element name="boundary"><xs:annotation><xs:documentation>Boundary condition for the transport equation. Time-dependent.</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="value" type="vecflt_type"><xs:annotation><xs:documentation>Value of the boundary condition (in case flag = 2). Unit depends on type, respectively [1-Wb, 2-A, 3-V]. For type 1 to 3, only the first position in the vector is used. For type 5, all three positions are used, meaning respectively a1, a2, a3. Time-dependent. Vector(3).</xs:documentation></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the boundary condition (any comment describing its origin : code, path to diagnostic signals, massaging); String</xs:documentation></xs:annotation></xs:element><xs:element name="type" type="xs:integer" default="1"><xs:annotation><xs:documentation>Type of the boundary condition for the transport solver (in case flag = 2). 0- equation not solved; 1- edge value of poloidal flux; 2- total current inside boundary; 3- edge Vloop; 4- not defined; 5- generic boundary condition expressed as a1*(dpsi_drho_tor)+a2*psi=a3. . Time-dependent.Scalar</xs:documentation></xs:annotation></xs:element><xs:element name="rho" type="xs:float" default="1"><xs:annotation><xs:documentation>Position of the boundary condition (in terms of toroidal flux coordinate) for the transport solver [m]. Outside this boundary, the value of the data are considered to be prescribed. Scalar</xs:documentation></xs:annotation></xs:element><xs:element ref="codeparam"/></xs:sequence></xs:complexType></xs:element><xs:element name="jni"><xs:annotation><xs:documentation>Non-inductive parallel current density [A/m^2]; Time-dependent;</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="value" type="vecflt_type"><xs:annotation><xs:documentation>Value of jni; Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="integral" type="vecflt_type"><xs:annotation><xs:documentation>Integral from 0 to rho of jni. Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation></xs:annotation></xs:element></xs:sequence></xs:complexType></xs:element><xs:element name="sigma_par" type="coreprofile"><xs:annotation><xs:documentation>Parallel conductivity [ohm^-1.m^-1]. Time-dependent</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element ref="codeparam"/></xs:sequence></xs:complexType></xs:element><xs:element name="te" type="corefield"><xs:annotation><xs:documentation>Electron temperature [eV]; (source term in [W.m^-3]). Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="ti" type="corefieldion"><xs:annotation><xs:documentation>Ion temperature [eV]; (source term in [W.m^-3]). Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="ne" type="corefield"><xs:annotation><xs:documentation>Electron density [m^-3]; (source term in [m^-3]).Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="ni" type="corefieldion"><xs:annotation><xs:documentation>Ion density [m^-3]; (source term in [m^-3]). Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="vtor" type="corefieldion"><xs:annotation><xs:documentation>Toroidal velocity of the various ion species [m.s^-1]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="profiles1d"><xs:annotation><xs:documentation>Profiles derived from the fields solved in the transport equations, or from experiment.</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="pe" type="coreprofile"><xs:annotation><xs:documentation>Electron pressure [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="dpedt" type="coreprofile"><xs:annotation><xs:documentation>Time derivative of the electron pressure [Pa/s]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="pi" type="coreprofion"><xs:annotation><xs:documentation>Ion pressure [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="pi_tot" type="coreprofile"><xs:annotation><xs:documentation>Total ion pressure (sum of the species) [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="dpi_totdt" type="coreprofile"><xs:annotation><xs:documentation>Time derivative of the total ion pressure [Pa/s]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="pr_th" type="coreprofile"><xs:annotation><xs:documentation>Thermal pressure (electrons+ions) [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="pr_perp" type="coreprofile"><xs:annotation><xs:documentation>Total perpendicular pressure (electrons+ions, thermal+non-thermal) [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="pr_parallel" type="coreprofile"><xs:annotation><xs:documentation>Total parallel pressure (electrons+ions, thermal+non-thermal) [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="jtot" type="coreprofile"><xs:annotation><xs:documentation>total parallel current density = average(jtot.B) / B0, where B0 = coreprof/toroid_field/b0 [A/m^2]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="jni" type="coreprofile"><xs:annotation><xs:documentation>non-inductive parallel current density = average(jni.B) / B0, where B0 = coreprof/toroid_field/b0 [A/m^2]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="jphi" type="coreprofile"><xs:annotation><xs:documentation>total toroidal current density = average(jphi/R) / average(1/R) [A/m^2]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="joh" type="coreprofile"><xs:annotation><xs:documentation>ohmic parallel current density = average(joh.B) / B0, where B0 = coreprof/toroid_field/b0 [A/m^2]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="vloop" type="coreprofile"><xs:annotation><xs:documentation>Toroidal loop voltage [V]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="sigmapar" type="coreprofile"><xs:annotation><xs:documentation>Parallel conductivity [ohm^-1.m^-1]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="qoh" type="sourceel"><xs:annotation><xs:documentation>ohmic heating [W/m^3]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="qei" type="coreprofile"><xs:annotation><xs:documentation>Collisional heat transfer from electrons to ions (equipartition term) [W/m^3]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="eparallel" type="coreprofile"><xs:annotation><xs:documentation>Parallel electric field = average(E.B) / B0, where B0 = coreprof/toroid_field/b0 [V.m^-1]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="e_b" type="coreprofile"><xs:annotation><xs:documentation>Average(E.B) [V.T.m^-1]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="q" type="coreprofile"><xs:annotation><xs:documentation>Safety factor profile; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="shear" type="coreprofile"><xs:annotation><xs:documentation>Magnetic shear profile; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="ns" type="coreprofion"><xs:annotation><xs:documentation>Density of fast ions, for the various ion species [m^-3]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="mtor" type="coreprofion"><xs:annotation><xs:documentation>Toroidal momentum of the various ion species [UNITS?]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="wtor" type="coreprofion"><xs:annotation><xs:documentation>Angular toroidal rotation frequency of the various ion species [s^-1]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="vpol" type="coreprofion"><xs:annotation><xs:documentation>Neoclassical poloidal rotation of each ion species [m/s]. Time-dependent.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="zeff" type="coreprofile"><xs:annotation><xs:documentation>Effective charge profile; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="bpol" type="coreprofile"><xs:annotation><xs:documentation>Average poloidal magnetic field, defined as sqrt(ave(grad rho^2/R^2)).dpsi/drho [T]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="dvprimedt" type="coreprofile"><xs:annotation><xs:documentation>Time derivative of the radial derivative of the volume enclosed in the flux surface, i.e. d/dt(dV/drho_tor) [m^2.s^-1]; Time-dependent.</xs:documentation></xs:annotation></xs:element></xs:sequence></xs:complexType></xs:element><xs:element name="globalparam"><xs:annotation><xs:documentation>Various global quantities calculated from the 1D profiles. Time-dependent</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="current_tot" type="xs:float"><xs:annotation><xs:documentation>Total plasma current [A]; Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="current_bnd" type="xs:float"><xs:annotation><xs:documentation>Plasma current inside transport solver boundary rho_tor_bnd [A]; Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="current_ni" type="xs:float"><xs:annotation><xs:documentation>Total non-inductive parallel current [A]; Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="vloop" type="xs:float"><xs:annotation><xs:documentation>Toroidal loop voltage [V]; Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="li" type="xs:float"><xs:annotation><xs:documentation>Internal inductance; Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="beta_tor" type="xs:float" default="0.0"><xs:annotation><xs:documentation>toroidal beta; Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="beta_normal" type="xs:float" default="0.0"><xs:annotation><xs:documentation>normalised beta; Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="beta_pol" type="xs:float" default="0.0"><xs:annotation><xs:documentation>poloidal beta; Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="w_dia" type="xs:float" default="0.0"><xs:annotation><xs:documentation>Plasma energy content = 3/2 * int(p,dV) with p being the total pressure (pr_th + pr_perp). Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="geom_axis" type="rz0D"><xs:annotation><xs:documentation>RZ position of the geometric axis (defined as (Rmin+Rmax) / 2 and (Zmin+Zmax) / 2 of the boundary) [m]; Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element></xs:sequence></xs:complexType></xs:element><xs:element ref="codeparam"/><xs:element name="time" type="xs:float" default="0.0"><xs:annotation><xs:documentation>Time [s]; Time-dependent; Scalar</xs:documentation></xs:annotation></xs:element></xs:sequence></xs:complexType></xs:element>
Normalised toroidal flux coordinate values (= rho_tor normalised to the value at the last radial grid point, which is quasi at the Last Closed Flux Surface); Time-dependent; Vector (nrho)
<xs:element name="rho_tor_norm" type="vecflt_type"><xs:annotation><xs:documentation>Normalised toroidal flux coordinate values (= rho_tor normalised to the value at the last radial grid point, which is quasi at the Last Closed Flux Surface); Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
Toroidal field information entering the definition of rho_tor, for reference only. The physical value of the toroidal field should be taken from the toroidfield CPO. Time-dependent.
<xs:element name="toroid_field"><xs:annotation><xs:documentation>Toroidal field information entering the definition of rho_tor, for reference only. The physical value of the toroidal field should be taken from the toroidfield CPO. Time-dependent.</xs:documentation><xs:appinfo>machine description</xs:appinfo></xs:annotation><xs:complexType><xs:sequence><xs:element name="b0" type="xs:float"><xs:annotation><xs:documentation>Vacuum field at r0 [T]; Time-dependent. Scalar.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="b0prime" type="xs:float"><xs:annotation><xs:documentation>Time derivative of the vacuum field at r0 [T/s]; Time-dependent. Scalar.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="r0" type="xs:float"><xs:annotation><xs:documentation>Characteristic major radius of the device (used in publications, usually middle of the vessel at the equatorial midplane) [m]. Scalar.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="time" type="xs:float"><xs:annotation><xs:documentation>Time [s] (exact time slice used from the time array of the source signal, here the toroidfield CPO. If the time slice does not exist in the time array of the source signal, it means linear interpolation has been used); Time-dependent; Scalar.</xs:documentation></xs:annotation></xs:element></xs:sequence></xs:complexType></xs:element>
<xs:element name="b0" type="xs:float"><xs:annotation><xs:documentation>Vacuum field at r0 [T]; Time-dependent. Scalar.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
Time derivative of the vacuum field at r0 [T/s]; Time-dependent. Scalar.
Diagram
Type
xs:float
Properties
content
simple
Source
<xs:element name="b0prime" type="xs:float"><xs:annotation><xs:documentation>Time derivative of the vacuum field at r0 [T/s]; Time-dependent. Scalar.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
Characteristic major radius of the device (used in publications, usually middle of the vessel at the equatorial midplane) [m]. Scalar.
Diagram
Type
xs:float
Properties
content
simple
Source
<xs:element name="r0" type="xs:float"><xs:annotation><xs:documentation>Characteristic major radius of the device (used in publications, usually middle of the vessel at the equatorial midplane) [m]. Scalar.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
Time [s] (exact time slice used from the time array of the source signal, here the toroidfield CPO. If the time slice does not exist in the time array of the source signal, it means linear interpolation has been used); Time-dependent; Scalar.
Diagram
Type
xs:float
Properties
content
simple
Source
<xs:element name="time" type="xs:float"><xs:annotation><xs:documentation>Time [s] (exact time slice used from the time array of the source signal, here the toroidfield CPO. If the time slice does not exist in the time array of the source signal, it means linear interpolation has been used); Time-dependent; Scalar.</xs:documentation></xs:annotation></xs:element>
<xs:element name="compositions" type="compositions_type"><xs:annotation><xs:documentation>Contains all the composition information for the simulation (main ions, impurities, neutrals, edge species).</xs:documentation></xs:annotation></xs:element>
<xs:element name="psi"><xs:annotation><xs:documentation>Poloidal magnetic flux [Wb]; Time-dependent;</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="value" type="vecflt_type" default="[0.0,0.0]"><xs:annotation><xs:documentation>Signal value [Wb]; Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="ddrho" type="vecflt_type" default="[0.0,0.0]"><xs:annotation><xs:documentation>Radial derivative (dvalue/drho_tor) [Wb.m^-1]; Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element><xs:element name="d2drho2" type="vecflt_type" default="[0.0,0.0]"><xs:annotation><xs:documentation>Second order radial derivative (d2value/drho_tor2) [Wb.m^-2]; Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element><xs:element name="ddt_rhotorn" type="vecflt_type"><xs:annotation><xs:documentation>Time derivative of the poloidal flux at constant rho_tor_norm [V]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="ddt_phi" type="vecflt_type"><xs:annotation><xs:documentation>Time derivative of the poloidal flux at constant toroidal flux [V]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation></xs:annotation></xs:element><xs:element name="flag" type="xs:integer" default="0"><xs:annotation><xs:documentation>Flag describing how the profile has been processed : 0-not calculated; 1-interpretative; 2-calculated by the transport solver; 3-calculated by a separate code : in that case only, description of the code provided in codeparam at the same level; 4-used value from the previous time step; Time-dependent; Scalar</xs:documentation></xs:annotation></xs:element><xs:element name="boundary"><xs:annotation><xs:documentation>Boundary condition for the transport equation. Time-dependent.</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="value" type="vecflt_type"><xs:annotation><xs:documentation>Value of the boundary condition (in case flag = 2). Unit depends on type, respectively [1-Wb, 2-A, 3-V]. For type 1 to 3, only the first position in the vector is used. For type 5, all three positions are used, meaning respectively a1, a2, a3. Time-dependent. Vector(3).</xs:documentation></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the boundary condition (any comment describing its origin : code, path to diagnostic signals, massaging); String</xs:documentation></xs:annotation></xs:element><xs:element name="type" type="xs:integer" default="1"><xs:annotation><xs:documentation>Type of the boundary condition for the transport solver (in case flag = 2). 0- equation not solved; 1- edge value of poloidal flux; 2- total current inside boundary; 3- edge Vloop; 4- not defined; 5- generic boundary condition expressed as a1*(dpsi_drho_tor)+a2*psi=a3. . Time-dependent.Scalar</xs:documentation></xs:annotation></xs:element><xs:element name="rho" type="xs:float" default="1"><xs:annotation><xs:documentation>Position of the boundary condition (in terms of toroidal flux coordinate) for the transport solver [m]. Outside this boundary, the value of the data are considered to be prescribed. Scalar</xs:documentation></xs:annotation></xs:element><xs:element ref="codeparam"/></xs:sequence></xs:complexType></xs:element><xs:element name="jni"><xs:annotation><xs:documentation>Non-inductive parallel current density [A/m^2]; Time-dependent;</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="value" type="vecflt_type"><xs:annotation><xs:documentation>Value of jni; Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="integral" type="vecflt_type"><xs:annotation><xs:documentation>Integral from 0 to rho of jni. Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation></xs:annotation></xs:element></xs:sequence></xs:complexType></xs:element><xs:element name="sigma_par" type="coreprofile"><xs:annotation><xs:documentation>Parallel conductivity [ohm^-1.m^-1]. Time-dependent</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element ref="codeparam"/></xs:sequence></xs:complexType></xs:element>
<xs:element name="ddt_rhotorn" type="vecflt_type"><xs:annotation><xs:documentation>Time derivative of the poloidal flux at constant rho_tor_norm [V]. Time-dependent.</xs:documentation></xs:annotation></xs:element>
<xs:element name="ddt_phi" type="vecflt_type"><xs:annotation><xs:documentation>Time derivative of the poloidal flux at constant toroidal flux [V]. Time-dependent.</xs:documentation></xs:annotation></xs:element>
Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String
Diagram
Type
xs:string
Properties
content
simple
Source
<xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation></xs:annotation></xs:element>
Flag describing how the profile has been processed : 0-not calculated; 1-interpretative; 2-calculated by the transport solver; 3-calculated by a separate code : in that case only, description of the code provided in codeparam at the same level; 4-used value from the previous time step; Time-dependent; Scalar
Diagram
Type
xs:integer
Properties
content
simple
default
0
Source
<xs:element name="flag" type="xs:integer" default="0"><xs:annotation><xs:documentation>Flag describing how the profile has been processed : 0-not calculated; 1-interpretative; 2-calculated by the transport solver; 3-calculated by a separate code : in that case only, description of the code provided in codeparam at the same level; 4-used value from the previous time step; Time-dependent; Scalar</xs:documentation></xs:annotation></xs:element>
<xs:element name="boundary"><xs:annotation><xs:documentation>Boundary condition for the transport equation. Time-dependent.</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="value" type="vecflt_type"><xs:annotation><xs:documentation>Value of the boundary condition (in case flag = 2). Unit depends on type, respectively [1-Wb, 2-A, 3-V]. For type 1 to 3, only the first position in the vector is used. For type 5, all three positions are used, meaning respectively a1, a2, a3. Time-dependent. Vector(3).</xs:documentation></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the boundary condition (any comment describing its origin : code, path to diagnostic signals, massaging); String</xs:documentation></xs:annotation></xs:element><xs:element name="type" type="xs:integer" default="1"><xs:annotation><xs:documentation>Type of the boundary condition for the transport solver (in case flag = 2). 0- equation not solved; 1- edge value of poloidal flux; 2- total current inside boundary; 3- edge Vloop; 4- not defined; 5- generic boundary condition expressed as a1*(dpsi_drho_tor)+a2*psi=a3. . Time-dependent.Scalar</xs:documentation></xs:annotation></xs:element><xs:element name="rho" type="xs:float" default="1"><xs:annotation><xs:documentation>Position of the boundary condition (in terms of toroidal flux coordinate) for the transport solver [m]. Outside this boundary, the value of the data are considered to be prescribed. Scalar</xs:documentation></xs:annotation></xs:element><xs:element ref="codeparam"/></xs:sequence></xs:complexType></xs:element>
Value of the boundary condition (in case flag = 2). Unit depends on type, respectively [1-Wb, 2-A, 3-V]. For type 1 to 3, only the first position in the vector is used. For type 5, all three positions are used, meaning respectively a1, a2, a3. Time-dependent. Vector(3).
<xs:element name="value" type="vecflt_type"><xs:annotation><xs:documentation>Value of the boundary condition (in case flag = 2). Unit depends on type, respectively [1-Wb, 2-A, 3-V]. For type 1 to 3, only the first position in the vector is used. For type 5, all three positions are used, meaning respectively a1, a2, a3. Time-dependent. Vector(3).</xs:documentation></xs:annotation></xs:element>
Source of the boundary condition (any comment describing its origin : code, path to diagnostic signals, massaging); String
Diagram
Type
xs:string
Properties
content
simple
Source
<xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the boundary condition (any comment describing its origin : code, path to diagnostic signals, massaging); String</xs:documentation></xs:annotation></xs:element>
Type of the boundary condition for the transport solver (in case flag = 2). 0- equation not solved; 1- edge value of poloidal flux; 2- total current inside boundary; 3- edge Vloop; 4- not defined; 5- generic boundary condition expressed as a1*(dpsi_drho_tor)+a2*psi=a3. . Time-dependent.Scalar
Diagram
Type
xs:integer
Properties
content
simple
default
1
Source
<xs:element name="type" type="xs:integer" default="1"><xs:annotation><xs:documentation>Type of the boundary condition for the transport solver (in case flag = 2). 0- equation not solved; 1- edge value of poloidal flux; 2- total current inside boundary; 3- edge Vloop; 4- not defined; 5- generic boundary condition expressed as a1*(dpsi_drho_tor)+a2*psi=a3. . Time-dependent.Scalar</xs:documentation></xs:annotation></xs:element>
Position of the boundary condition (in terms of toroidal flux coordinate) for the transport solver [m]. Outside this boundary, the value of the data are considered to be prescribed. Scalar
Diagram
Type
xs:float
Properties
content
simple
default
1
Source
<xs:element name="rho" type="xs:float" default="1"><xs:annotation><xs:documentation>Position of the boundary condition (in terms of toroidal flux coordinate) for the transport solver [m]. Outside this boundary, the value of the data are considered to be prescribed. Scalar</xs:documentation></xs:annotation></xs:element>
<xs:element name="jni"><xs:annotation><xs:documentation>Non-inductive parallel current density [A/m^2]; Time-dependent;</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="value" type="vecflt_type"><xs:annotation><xs:documentation>Value of jni; Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="integral" type="vecflt_type"><xs:annotation><xs:documentation>Integral from 0 to rho of jni. Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation></xs:annotation></xs:element></xs:sequence></xs:complexType></xs:element>
<xs:element name="integral" type="vecflt_type"><xs:annotation><xs:documentation>Integral from 0 to rho of jni. Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element>
Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String
Diagram
Type
xs:string
Properties
content
simple
Source
<xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation></xs:annotation></xs:element>
Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String
Diagram
Type
xs:string
Properties
content
simple
Source
<xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation></xs:annotation></xs:element>
<xs:element name="te" type="corefield"><xs:annotation><xs:documentation>Electron temperature [eV]; (source term in [W.m^-3]). Time-dependent;</xs:documentation></xs:annotation></xs:element>
Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String
Diagram
Type
xs:string
Properties
content
simple
Source
<xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation></xs:annotation></xs:element>
Flag describing how the profile has been processed : 0-not calculated 1-interpretative; 2-calculated by the transport solver; 3-calculated by a separate code : in that case only, description of the code provided in codeparam at the same level; 4-used value from the previous time step; Time-dependent; Scalar
Diagram
Type
xs:integer
Properties
content
simple
default
0
Source
<xs:element name="flag" type="xs:integer" default="0"><xs:annotation><xs:documentation>Flag describing how the profile has been processed : 0-not calculated 1-interpretative; 2-calculated by the transport solver; 3-calculated by a separate code : in that case only, description of the code provided in codeparam at the same level; 4-used value from the previous time step; Time-dependent; Scalar</xs:documentation></xs:annotation></xs:element>
<xs:element name="boundary" type="boundaryel"><xs:annotation><xs:documentation>Boundary condition for the transport equation. Time-dependent.</xs:documentation></xs:annotation></xs:element>
<xs:element name="source_term" type="sourceel"><xs:annotation><xs:documentation>Total source term for the transport equation. Time-dependent.</xs:documentation></xs:annotation></xs:element>
<xs:element name="value" type="vecflt_type"><xs:annotation><xs:documentation>Value of the source term; Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="integral" type="vecflt_type"><xs:annotation><xs:documentation>Integral from 0 to rho of the source term. Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String
Diagram
Type
xs:string
Properties
content
simple
Source
<xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String
Diagram
Type
xs:string
Properties
content
simple
Source
<xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="flux" type="fluxel"><xs:annotation><xs:documentation>Fluxes of the quantity, two definitions. Time-dependent.</xs:documentation></xs:annotation></xs:element>
<xs:element name="flux_dv" type="vecflt_type"><xs:annotation><xs:documentation>Flux of the field calculated from the transport coefficients. Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="flux_interp" type="vecflt_type"><xs:annotation><xs:documentation>Interpretative flux deduced from measured data, the integral of the source term, and the time derivative of the field. Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="flux_dv_surf" type="vecflt_type"><xs:annotation><xs:documentation>Net flux through the magnetic surface, i.e. integral over the magnetic surface area of flux_dv. Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="time_deriv" type="vecflt_type"><xs:annotation><xs:documentation>Integral of the time derivative term of the transport equation. Time-dependent. Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="ti" type="corefieldion"><xs:annotation><xs:documentation>Ion temperature [eV]; (source term in [W.m^-3]). Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="source" type="vecstring_type"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); Array of strings (nion)</xs:documentation></xs:annotation></xs:element>
Flag describing how the profile has been processed : 0-not calculated 1-interpretative; 2-calculated by the transport solver; 3-calculated by a separate code : in that case only, description of the code provided in codeparam at the same level; 4-used value from the previous time step; Time-dependent; Vector(nion)
<xs:element name="flag" type="vecint_type" default="[0,0]"><xs:annotation><xs:documentation>Flag describing how the profile has been processed : 0-not calculated 1-interpretative; 2-calculated by the transport solver; 3-calculated by a separate code : in that case only, description of the code provided in codeparam at the same level; 4-used value from the previous time step; Time-dependent; Vector(nion)</xs:documentation></xs:annotation></xs:element>
<xs:element name="boundary" type="boundaryion"><xs:annotation><xs:documentation>Boundary condition for the transport equation</xs:documentation></xs:annotation></xs:element>
<xs:element name="source_term" type="sourceion"><xs:annotation><xs:documentation>Total source term for the transport equation. Time-dependent.</xs:documentation></xs:annotation></xs:element>
<xs:element name="value" type="matflt_type"><xs:annotation><xs:documentation>Value of the source term; Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="integral" type="matflt_type"><xs:annotation><xs:documentation>Integral from 0 to rho of the source term. Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="source" type="vecstring_type"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); Array of strings (nion)</xs:documentation></xs:annotation></xs:element>
<xs:element name="source" type="vecstring_type"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); Array of strings (nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="flux" type="fluxion"><xs:annotation><xs:documentation>Fluxes of the quantity, two definitions. Time-dependent.</xs:documentation></xs:annotation></xs:element>
<xs:element name="flux_dv" type="matflt_type" default="[[0.0,0.0],[0.0,0.0]]"><xs:annotation><xs:documentation>Flux of the field calculated from the transport coefficients. Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
Interpretative flux deduced from measured data, the integral of the source term, and the time derivative of the field. Time-dependent; Matrix (nrho,nion)
<xs:element name="flux_interp" type="matflt_type" default="[[0.0,0.0],[0.0,0.0]]"><xs:annotation><xs:documentation>Interpretative flux deduced from measured data, the integral of the source term, and the time derivative of the field. Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="flux_dv_surf" type="matflt_type"><xs:annotation><xs:documentation>Net flux through the magnetic surface, i.e. integral over the magnetic surface area of flux_dv. Time-dependent; Matrix(nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="time_deriv" type="matflt_type"><xs:annotation><xs:documentation>Integral of the time derivative term of the transport equation. Time-dependent. Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="ne" type="corefield"><xs:annotation><xs:documentation>Electron density [m^-3]; (source term in [m^-3]).Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="ni" type="corefieldion"><xs:annotation><xs:documentation>Ion density [m^-3]; (source term in [m^-3]). Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="vtor" type="corefieldion"><xs:annotation><xs:documentation>Toroidal velocity of the various ion species [m.s^-1]; Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="profiles1d"><xs:annotation><xs:documentation>Profiles derived from the fields solved in the transport equations, or from experiment.</xs:documentation></xs:annotation><xs:complexType><xs:sequence><xs:element name="pe" type="coreprofile"><xs:annotation><xs:documentation>Electron pressure [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="dpedt" type="coreprofile"><xs:annotation><xs:documentation>Time derivative of the electron pressure [Pa/s]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="pi" type="coreprofion"><xs:annotation><xs:documentation>Ion pressure [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="pi_tot" type="coreprofile"><xs:annotation><xs:documentation>Total ion pressure (sum of the species) [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="dpi_totdt" type="coreprofile"><xs:annotation><xs:documentation>Time derivative of the total ion pressure [Pa/s]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="pr_th" type="coreprofile"><xs:annotation><xs:documentation>Thermal pressure (electrons+ions) [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="pr_perp" type="coreprofile"><xs:annotation><xs:documentation>Total perpendicular pressure (electrons+ions, thermal+non-thermal) [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="pr_parallel" type="coreprofile"><xs:annotation><xs:documentation>Total parallel pressure (electrons+ions, thermal+non-thermal) [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="jtot" type="coreprofile"><xs:annotation><xs:documentation>total parallel current density = average(jtot.B) / B0, where B0 = coreprof/toroid_field/b0 [A/m^2]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="jni" type="coreprofile"><xs:annotation><xs:documentation>non-inductive parallel current density = average(jni.B) / B0, where B0 = coreprof/toroid_field/b0 [A/m^2]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="jphi" type="coreprofile"><xs:annotation><xs:documentation>total toroidal current density = average(jphi/R) / average(1/R) [A/m^2]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="joh" type="coreprofile"><xs:annotation><xs:documentation>ohmic parallel current density = average(joh.B) / B0, where B0 = coreprof/toroid_field/b0 [A/m^2]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="vloop" type="coreprofile"><xs:annotation><xs:documentation>Toroidal loop voltage [V]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="sigmapar" type="coreprofile"><xs:annotation><xs:documentation>Parallel conductivity [ohm^-1.m^-1]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="qoh" type="sourceel"><xs:annotation><xs:documentation>ohmic heating [W/m^3]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="qei" type="coreprofile"><xs:annotation><xs:documentation>Collisional heat transfer from electrons to ions (equipartition term) [W/m^3]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="eparallel" type="coreprofile"><xs:annotation><xs:documentation>Parallel electric field = average(E.B) / B0, where B0 = coreprof/toroid_field/b0 [V.m^-1]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="e_b" type="coreprofile"><xs:annotation><xs:documentation>Average(E.B) [V.T.m^-1]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="q" type="coreprofile"><xs:annotation><xs:documentation>Safety factor profile; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="shear" type="coreprofile"><xs:annotation><xs:documentation>Magnetic shear profile; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="ns" type="coreprofion"><xs:annotation><xs:documentation>Density of fast ions, for the various ion species [m^-3]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="mtor" type="coreprofion"><xs:annotation><xs:documentation>Toroidal momentum of the various ion species [UNITS?]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="wtor" type="coreprofion"><xs:annotation><xs:documentation>Angular toroidal rotation frequency of the various ion species [s^-1]; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="vpol" type="coreprofion"><xs:annotation><xs:documentation>Neoclassical poloidal rotation of each ion species [m/s]. Time-dependent.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="zeff" type="coreprofile"><xs:annotation><xs:documentation>Effective charge profile; Time-dependent;</xs:documentation></xs:annotation></xs:element><xs:element name="bpol" type="coreprofile"><xs:annotation><xs:documentation>Average poloidal magnetic field, defined as sqrt(ave(grad rho^2/R^2)).dpsi/drho [T]. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="dvprimedt" type="coreprofile"><xs:annotation><xs:documentation>Time derivative of the radial derivative of the volume enclosed in the flux surface, i.e. d/dt(dV/drho_tor) [m^2.s^-1]; Time-dependent.</xs:documentation></xs:annotation></xs:element></xs:sequence></xs:complexType></xs:element>
<xs:element name="dpedt" type="coreprofile"><xs:annotation><xs:documentation>Time derivative of the electron pressure [Pa/s]; Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="source" type="vecstring_type"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); Array of strings (nion)</xs:documentation></xs:annotation></xs:element>
<xs:element name="pi_tot" type="coreprofile"><xs:annotation><xs:documentation>Total ion pressure (sum of the species) [Pa]; Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="dpi_totdt" type="coreprofile"><xs:annotation><xs:documentation>Time derivative of the total ion pressure [Pa/s]; Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="qei" type="coreprofile"><xs:annotation><xs:documentation>Collisional heat transfer from electrons to ions (equipartition term) [W/m^3]; Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="eparallel" type="coreprofile"><xs:annotation><xs:documentation>Parallel electric field = average(E.B) / B0, where B0 = coreprof/toroid_field/b0 [V.m^-1]. Time-dependent.</xs:documentation></xs:annotation></xs:element>
<xs:element name="ns" type="coreprofion"><xs:annotation><xs:documentation>Density of fast ions, for the various ion species [m^-3]; Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="mtor" type="coreprofion"><xs:annotation><xs:documentation>Toroidal momentum of the various ion species [UNITS?]; Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="wtor" type="coreprofion"><xs:annotation><xs:documentation>Angular toroidal rotation frequency of the various ion species [s^-1]; Time-dependent;</xs:documentation></xs:annotation></xs:element>
<xs:element name="vpol" type="coreprofion"><xs:annotation><xs:documentation>Neoclassical poloidal rotation of each ion species [m/s]. Time-dependent.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="bpol" type="coreprofile"><xs:annotation><xs:documentation>Average poloidal magnetic field, defined as sqrt(ave(grad rho^2/R^2)).dpsi/drho [T]. Time-dependent.</xs:documentation></xs:annotation></xs:element>
<xs:element name="dvprimedt" type="coreprofile"><xs:annotation><xs:documentation>Time derivative of the radial derivative of the volume enclosed in the flux surface, i.e. d/dt(dV/drho_tor) [m^2.s^-1]; Time-dependent.</xs:documentation></xs:annotation></xs:element>
Plasma energy content = 3/2 * int(p,dV) with p being the total pressure (pr_th + pr_perp). Time-dependent; Scalar
Diagram
Type
xs:float
Properties
content
simple
default
0.0
Source
<xs:element name="w_dia" type="xs:float" default="0.0"><xs:annotation><xs:documentation>Plasma energy content = 3/2 * int(p,dV) with p being the total pressure (pr_th + pr_perp). Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:element name="geom_axis" type="rz0D"><xs:annotation><xs:documentation>RZ position of the geometric axis (defined as (Rmin+Rmax) / 2 and (Zmin+Zmax) / 2 of the boundary) [m]; Time-dependent; Scalar</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element>
<xs:complexType name="corefield"><xs:annotation><xs:documentation>Structure for a main field of core transport equations; Time-dependent;</xs:documentation></xs:annotation><xs:sequence><xs:element name="value" type="vecflt_type" default="[0.0,0.0]"><xs:annotation><xs:documentation>Signal value; Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="ddrho" type="vecflt_type" default="[0.0,0.0]"><xs:annotation><xs:documentation>Radial derivative (dvalue/drho_tor) [signal_value_unit.m^-1]; Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element><xs:element name="d2drho2" type="vecflt_type" default="[0.0,0.0]"><xs:annotation><xs:documentation>Second order radial derivative (d2value/drho_tor^2) [signal_value_unit.m^-2]; Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element><xs:element name="ddt" type="vecflt_type" default="[0.0,0.0]"><xs:annotation><xs:documentation>Time derivative (dvalue/dtime) [signal_value_unit.s^-1]; Time-dependent; Vector (nrho)</xs:documentation></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation></xs:annotation></xs:element><xs:element name="flag" type="xs:integer" default="0"><xs:annotation><xs:documentation>Flag describing how the profile has been processed : 0-not calculated 1-interpretative; 2-calculated by the transport solver; 3-calculated by a separate code : in that case only, description of the code provided in codeparam at the same level; 4-used value from the previous time step; Time-dependent; Scalar</xs:documentation></xs:annotation></xs:element><xs:element name="boundary" type="boundaryel"><xs:annotation><xs:documentation>Boundary condition for the transport equation. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="source_term" type="sourceel"><xs:annotation><xs:documentation>Total source term for the transport equation. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="transp_coef" type="coretransel"><xs:annotation><xs:documentation>Total transport coefficients. Time-dependent.</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="flux" type="fluxel"><xs:annotation><xs:documentation>Fluxes of the quantity, two definitions. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="flux_dv_surf" type="vecflt_type"><xs:annotation><xs:documentation>Net flux through the magnetic surface, i.e. integral over the magnetic surface area of flux_dv. Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="time_deriv" type="vecflt_type"><xs:annotation><xs:documentation>Integral of the time derivative term of the transport equation. Time-dependent. Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element ref="codeparam"/></xs:sequence></xs:complexType>
Complex Type sourceel
Namespace
No namespace
Annotations
Structure for the total source term for the transport equation (electrons). Time-dependent;
<xs:complexType name="sourceel"><xs:annotation><xs:documentation>Structure for the total source term for the transport equation (electrons). Time-dependent;</xs:documentation></xs:annotation><xs:sequence><xs:element name="value" type="vecflt_type"><xs:annotation><xs:documentation>Value of the source term; Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="integral" type="vecflt_type"><xs:annotation><xs:documentation>Integral from 0 to rho of the source term. Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element></xs:sequence></xs:complexType>
Complex Type coretransel
Namespace
No namespace
Annotations
Structure for the transport coefficients for the transport equation (electrons). Time-dependent;
<xs:complexType name="coretransel"><xs:annotation><xs:documentation>Structure for the transport coefficients for the transport equation (electrons). Time-dependent;</xs:documentation></xs:annotation><xs:sequence><xs:element name="diff" type="vecflt_type"><xs:annotation><xs:documentation>Diffusion coefficient [m^2.s^-1]. Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="vconv" type="vecflt_type"><xs:annotation><xs:documentation>Convection coefficient [m.s^-1]. Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="source" type="xs:string"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); String</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element></xs:sequence></xs:complexType>
Complex Type fluxel
Namespace
No namespace
Annotations
Structure for the fluxes of a field of the core transport equations (electrons); Time-dependent;
<xs:complexType name="fluxel"><xs:annotation><xs:documentation>Structure for the fluxes of a field of the core transport equations (electrons); Time-dependent;</xs:documentation></xs:annotation><xs:sequence><xs:element name="flux_dv" type="vecflt_type"><xs:annotation><xs:documentation>Flux of the field calculated from the transport coefficients. Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="flux_interp" type="vecflt_type"><xs:annotation><xs:documentation>Interpretative flux deduced from measured data, the integral of the source term, and the time derivative of the field. Time-dependent; Vector (nrho)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element></xs:sequence></xs:complexType>
Complex Type corefieldion
Namespace
No namespace
Annotations
Structure for an ion field of core transport equations; Time-dependent;
<xs:complexType name="corefieldion"><xs:annotation><xs:documentation>Structure for an ion field of core transport equations; Time-dependent;</xs:documentation></xs:annotation><xs:sequence><xs:element name="value" type="matflt_type" default="[[0.0,0.0],[0.0,0.0]]"><xs:annotation><xs:documentation>Signal value; Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="ddrho" type="matflt_type"><xs:annotation><xs:documentation>Radial derivative (dvalue/drho_tor) [signal_value_unit.m^-1]; Time-dependent; Matrix (nrho,nion)</xs:documentation></xs:annotation></xs:element><xs:element name="d2drho2" type="matflt_type"><xs:annotation><xs:documentation>Second order radial derivative (d2value/drho_tor^2) [signal_value_unit.m^-2]; Time-dependent; Matrix (nrho,nion)</xs:documentation></xs:annotation></xs:element><xs:element name="ddt" type="matflt_type"><xs:annotation><xs:documentation>Time derivative (dvalue/dtime) [signal_value_unit.s^-1]; Time-dependent; Matrix (nrho,nion)</xs:documentation></xs:annotation></xs:element><xs:element name="source" type="vecstring_type"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); Array of strings (nion)</xs:documentation></xs:annotation></xs:element><xs:element name="flag" type="vecint_type" default="[0,0]"><xs:annotation><xs:documentation>Flag describing how the profile has been processed : 0-not calculated 1-interpretative; 2-calculated by the transport solver; 3-calculated by a separate code : in that case only, description of the code provided in codeparam at the same level; 4-used value from the previous time step; Time-dependent; Vector(nion)</xs:documentation></xs:annotation></xs:element><xs:element name="boundary" type="boundaryion"><xs:annotation><xs:documentation>Boundary condition for the transport equation</xs:documentation></xs:annotation></xs:element><xs:element name="source_term" type="sourceion"><xs:annotation><xs:documentation>Total source term for the transport equation. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="transp_coef" type="coretransion"><xs:annotation><xs:documentation>Total transport coefficients. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="flux" type="fluxion"><xs:annotation><xs:documentation>Fluxes of the quantity, two definitions. Time-dependent.</xs:documentation></xs:annotation></xs:element><xs:element name="flux_dv_surf" type="matflt_type"><xs:annotation><xs:documentation>Net flux through the magnetic surface, i.e. integral over the magnetic surface area of flux_dv. Time-dependent; Matrix(nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="time_deriv" type="matflt_type"><xs:annotation><xs:documentation>Integral of the time derivative term of the transport equation. Time-dependent. Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element ref="codeparam"/></xs:sequence></xs:complexType>
Complex Type sourceion
Namespace
No namespace
Annotations
Structure for the total source term for the transport equation (ions). Time-dependent;
<xs:complexType name="sourceion"><xs:annotation><xs:documentation>Structure for the total source term for the transport equation (ions). Time-dependent;</xs:documentation></xs:annotation><xs:sequence><xs:element name="value" type="matflt_type"><xs:annotation><xs:documentation>Value of the source term; Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="integral" type="matflt_type"><xs:annotation><xs:documentation>Integral from 0 to rho of the source term. Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="source" type="vecstring_type"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); Array of strings (nion)</xs:documentation></xs:annotation></xs:element></xs:sequence></xs:complexType>
Complex Type coretransion
Namespace
No namespace
Annotations
Structure for the transport coefficients for the transport equation (ions). Time-dependent;
<xs:complexType name="coretransion"><xs:annotation><xs:documentation>Structure for the transport coefficients for the transport equation (ions). Time-dependent;</xs:documentation></xs:annotation><xs:sequence><xs:element name="diff" type="matflt_type"><xs:annotation><xs:documentation>Diffusion coefficient [m^2.s^-1]. Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="vconv" type="matflt_type"><xs:annotation><xs:documentation>Convection coefficient [m.s^-1]. Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="source" type="vecstring_type"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); Array of strings (nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element></xs:sequence></xs:complexType>
Complex Type fluxion
Namespace
No namespace
Annotations
Structure for the fluxes of a field of the core transport equations (ions); Time-dependent;
<xs:complexType name="fluxion"><xs:annotation><xs:documentation>Structure for the fluxes of a field of the core transport equations (ions); Time-dependent;</xs:documentation></xs:annotation><xs:sequence><xs:element name="flux_dv" type="matflt_type" default="[[0.0,0.0],[0.0,0.0]]"><xs:annotation><xs:documentation>Flux of the field calculated from the transport coefficients. Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="flux_interp" type="matflt_type" default="[[0.0,0.0],[0.0,0.0]]"><xs:annotation><xs:documentation>Interpretative flux deduced from measured data, the integral of the source term, and the time derivative of the field. Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element></xs:sequence></xs:complexType>
Complex Type coreprofion
Namespace
No namespace
Annotations
Structure for core plasma ion profile; Time-dependent
<xs:complexType name="coreprofion"><xs:annotation><xs:documentation>Structure for core plasma ion profile; Time-dependent</xs:documentation></xs:annotation><xs:sequence><xs:element name="value" type="matflt_type" default="[[0.0,0.0],[0.0,0.0]]"><xs:annotation><xs:documentation>Signal value; Time-dependent; Matrix (nrho,nion)</xs:documentation><xs:appinfo>experimental</xs:appinfo></xs:annotation></xs:element><xs:element name="source" type="vecstring_type"><xs:annotation><xs:documentation>Source of the profile (any comment describing the origin of the profile : code, path to diagnostic signals, massaging, ...); Array of strings (nion)</xs:documentation></xs:annotation></xs:element></xs:sequence></xs:complexType>